scholarly journals On theory of finite subsets monoid for one torsion abelian group

Author(s):  
Сергей Михайлович Дудаков

Ранее был доказан следующий результат: если абелева группа $\gG$ не является группой кручения, то теория моноида ее конечных подмножеств позволяет интерпретировать элементарную арифметику. В настоящей работе мы приводим пример, который показывает, что аналогичный результат можно получить и, по крайней мере, для некоторых групп кручения. Earlier it was proved the following claim. Let $\gG$ be a non-torsion abelian group and $\gG$ be the semigroup of finite subsets of $\gG$. Then elementary arithmetic can be interpreted in $\gG^*$, so the theory of $\gG^*$ is undecidable. Here we prove the same result for one torsion group, the multiplicative group of all roots of unity.

2021 ◽  
Vol 5 (2) ◽  
pp. 462-469
Author(s):  
Bernard Alechenu ◽  
Babayo Muhammed Abdullahi ◽  
Daniel Eneojo Emmanuel

This work penciled down the Composition Series of Factor Abelian Group over the source of all polynomial equations gleaned through  the nth roots of unity regular gons on a unit circle, a circle of radius one and centered at zero. To get the composition series, the third isomorphism theorem has to be passed through. But, the third isomorphism theorem itself gleaned via the first which is a deduction of the naturally existing canonical map. The solution of the source atom of the equation of all equation of polynomials are solvable by the intertwine of the Euler’s Formula and the De Moivre’s Theorem which after the inter-math, they become within the domain of complex analysis. For the source root of the equations, there is a recursive set of homomorphisms and ontoness of the mappings geneting the sequential terms in the composition series.    


1989 ◽  
Vol 41 (1) ◽  
pp. 14-67 ◽  
Author(s):  
M. Chacron

Let D stand for a division ring (or skewfield), let G stand for an ordered abelian group with positive infinity adjoined, and let ω: D → G. We call to a valuation of D with value group G, if ω is an onto mapping from D to G such that(i) ω(x) = ∞ if and only if x = 0,(ii) ω(x1 + x2) = min(ω (x1), ω (x2)), and(iii) ω (x1 x2) = ω (x1) + ω (x2).Associated to the valuation ω are its valuation ringR = ﹛x ∈ Dω(x) ≧ 0﹜,its maximal idealJ = ﹛x ∈ |ω(x) > 0﹜, and its residue division ring D = R/J.The invertible elements of the ring R are called valuation units. Clearly R and, hence, J are preserved under conjugation so that 1 + J is also preserved under conjugation. The latter is thus a normal subgroup of the multiplicative group Dm of D and hence, the quotient group D˙/1 + J makes sense (the residue group of ω). It enlarges in a natural way the residue division ring D (0 excluded, and addition “forgotten“).


Author(s):  
K. Szymiczek

Let k be a field of characteristic other than 2 and let g(k) denote the multiplicative group k* of the field k modulo squares, i.e. g(k) = k*/k*2. This is an abelian group of exponent 2 and its order, if finite, is a power of 2. We denote by G(k) the Grothendieck group of quadratic forms over k.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 321
Author(s):  
Manuel Fernandez-Guasti

The Victoria equation, a generalization of De Moivre’s formula in 1+n dimensional scator algebra, is inverted to obtain the roots of a scator. For the qth root in S1+n of a real or a scator number, there are qn possible roots. For n=1, the usual q complex roots are obtained with their concomitant cyclotomic geometric interpretation. For n≥2, in addition to the previous roots, new families arise. These roots are grouped according to two criteria: sets satisfying Abelian group properties under multiplication and sets catalogued according to director conjugation. The geometric interpretation is illustrated with the roots of unity in S1+2.


1972 ◽  
Vol 15 (4) ◽  
pp. 529-534 ◽  
Author(s):  
I. Hughes ◽  
K. R. Pearson

We denote by ZG the integral group ring of the finite group G. We call ±g, for g in G, a trivial unit of ZG. For G abelian, Higman [4] (see also [3, p. 262 ff]) showed that every unit of finite order in ZG is trivial. For arbitrary finite G (indeed, for a torsion group G, not necessarily finite), Higman [4] showed that every unit in ZG is trivial if and only if G is(i) abelian and the order of each element divides 4, or(ii) abelian and the order of each element divides 6, or(iii) the direct product of the quaternion group of order 8 and an abelian group of exponent 2.


1968 ◽  
Vol 20 ◽  
pp. 222-224
Author(s):  
M. Rajagopalan ◽  
K. G. Witz

In (1) R. G. Douglas says: “For a finite abelian group there exists a unique invariant mean which must be inversion invariant. For an infinite torsion abelian group it is not clear what the situation is.” It is not hard to see that if every element of an abelian group G is of order 2, then every invariant mean on G is also inversion invariant (see 1, remark 4). In this note we prove the following theorem (Theorem 1 below): An abelian torsion group G has an invariant mean which is not inverse invariant if, and only if, 2G is infinite. This result, together with the theorems of Douglas, answers completely the question of the existence (on an arbitrary abelian group) of invariant means which are not inverse invariant.


1983 ◽  
Vol 26 (1) ◽  
pp. 13-19 ◽  
Author(s):  
A. Bouvier

AbstractThe local class group of a Krull domain A is the quotient group G(A) = CI(A)/Pic(A). A Krull domain A is locally factorial if and only if G(A) = 0. In this paper, we characterize the Krull domains for which G(A) is a torsion group. We evaluate the local class group of several examples and finally, we explain why every abelian group is the local class group of a Krull domain.


1967 ◽  
Vol 63 (4) ◽  
pp. 923-928 ◽  
Author(s):  
P. L. Walker

1. Let G be a compact metric 0-dimensional Abelian group. Its dual or character group Γ is a discrete countable torsion group. We denote elements of G by x, of Γ by y, the value of the character y at x by (x, y), and the Fourier transform of f by


1977 ◽  
Vol 18 (1) ◽  
pp. 101-104 ◽  
Author(s):  
Gloria Potter

Several people, including Wallace [4] and Passman [3], have studied the Jacobson radical of the group algebra F[G] where F is a field and G is a multiplicative group. In [4], for instance, Wallace proves that if G is an abelian group with Sylow p-subgroup P and if F is a field of characteristic p, then the Jacobson radical of F[G] equals the right ideal generated by the radical of F[P]. In this paper we shall study group algebras over arbitrary commutative rings. By a reduction to the case of a semi-simple commutative ring, we obtain Theorem 1 whose corollary contains a generalization of Wallace's theorem. Theorem 2, on the other hand, uses the first theorem to obtain results related to the main theorem of [3].


2016 ◽  
Vol 38 (3) ◽  
pp. 832-862
Author(s):  
SELÇUK BARLAK ◽  
TRON OMLAND ◽  
NICOLAI STAMMEIER

We investigate the$K$-theory of unital UCT Kirchberg algebras${\mathcal{Q}}_{S}$arising from families$S$of relatively prime numbers. It is shown that$K_{\ast }({\mathcal{Q}}_{S})$is the direct sum of a free abelian group and a torsion group, each of which is realized by another distinct$C^{\ast }$-algebra naturally associated to$S$. The$C^{\ast }$-algebra representing the torsion part is identified with a natural subalgebra${\mathcal{A}}_{S}$of${\mathcal{Q}}_{S}$. For the$K$-theory of${\mathcal{Q}}_{S}$, the cardinality of$S$determines the free part and is also relevant for the torsion part, for which the greatest common divisor$g_{S}$of$\{p-1:p\in S\}$plays a central role as well. In the case where$|S|\leq 2$or$g_{S}=1$we obtain a complete classification for${\mathcal{Q}}_{S}$. Our results support the conjecture that${\mathcal{A}}_{S}$coincides with$\otimes _{p\in S}{\mathcal{O}}_{p}$. This would lead to a complete classification of${\mathcal{Q}}_{S}$, and is related to a conjecture about$k$-graphs.


Sign in / Sign up

Export Citation Format

Share Document