UTILIZATION OF SOLID OR LIQUID WASTES IN AGRICULTURE

2020 ◽  
Vol 3 (1) ◽  
pp. 9-12
Author(s):  
Aman Kumar Gupta ◽  
Alice Minj ◽  
Dipak Yadav ◽  
Anuj Poudel

Now-days increasing solid or liquid wastes are major problems in developing country therefore utilization of all these wastes are required because of its impact on the environment and as well as on agriculture. These wastes are decomposed and stabilized through composting, vermicomposting, anaerobic digestion, recycling and reuse. Solid wastes act as an organic fertilizer, nutrient supplier, and media for nursery and also helps in improving the physical, chemical and microbiological activity in agricultural soils. Reuse of wastewater helps in reducing water crisis in agriculture. Poultry wastes are used as organic fertilizer, feed for livestock, biogas production, products for commercial purposes.

Author(s):  
Napisa Pattharaprachayakul ◽  
Narumon Kesonlam ◽  
Pongpitak Duangjumpa ◽  
Vilai Rungsardthong ◽  
Worakrit Suvajittanont ◽  
...  

Pineapple wastes are produced in huge amount during the industrial canning process of pineapple; in Thailand over 400,000 tons per annum of canned pineapple exported leaving behind the waste. Besides the pulps and peels as solid wastes, the squeezed pineapple liquid wastes (SPLW) extracted from solid wastes can also be used for anaerobic digestion. In the present study, the anaerobic digestion of liquid squeezed from industrial pineapple peels was carried out using a lab-scale hybrid reactor. The reactor was operated for over 170 days with the hydraulic retention time (HRT) of 20 days decreasing down to 5 days and simultaneous control of organic loading rate (OLR). Under controlled conditions in the hybrid reactor, pH was maintained at 6.5–7.6 by adding alkaline for anaerobic microbial activity. Results showed that the chemical oxygen demand (COD) removal efficiency was at ≥ 90% for all conditions. The biogas production (mL/day) increased thoroughly from longer HRT to shorter HRT, as same as methane production with the maximum values (HRT 5 days, OLR 5 g/COD/ day with recirculation) of 55,130 and 30,322 mL/day, respectively. Moreover, the highest yields of biogas and methane were also investigated under similar conditions with the values of 0.504 and 0.277 L/gCOD, respectively. Interestingly, this optimization of both HRT and OLR of lab-scale anaerobic digestion process could be further practically applied to pilot or industrial scale in canned pineapple factories for biogas production.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3573 ◽  
Author(s):  
Meneses-Quelal Orlando ◽  
Velázquez-Martí Borja

The objective of this research is to present a review of the current technologies and pretreatments used in the fermentation of cow, pig and poultry manure. Pretreatment techniques were classified into physical, chemical, physicochemical, and biological groups. Various aspects of these different pretreatment approaches are discussed in this review. The advantages and disadvantages of its applicability are highlighted since the effects of pretreatments are complex and generally depend on the characteristics of the animal manure and the operational parameters. Biological pretreatments were shown to improve methane production from animal manure by 74%, chemical pretreatments by 45%, heat pretreatments by 41% and physical pretreatments by 30%. In general, pretreatments improve anaerobic digestion of the lignocellulosic content of animal manure and, therefore, increase methane yield.


2013 ◽  
Vol 29 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Siri Pugesgaard ◽  
Jørgen E. Olesen ◽  
Uffe Jørgensen ◽  
Tommy Dalgaard

AbstractAnaerobic digestion of manure and crops provides the possibility of a combined production of renewable energy and organic fertilizer on organic farms and has been suggested as an option to improve sustainability of organic agriculture. In the present study, the consequences of implementation of anaerobic digestion and biogas production were analyzed on a 1000 ha model farm with combined dairy and cash crop production, representing organic agriculture in Denmark. The effects on crop rotation, nitrogen flows and losses, yield, energy balance and greenhouse gas (GHG) emissions were evaluated for four scenarios of biogas production on the farm. Animal manure was digested for biogas production in all scenarios and was supplemented with: (1) 100 ha grass–clover for biogas, (2) 100 ha maize for biogas, (3) 200 ha grass–clover for biogas and reduced number of livestock, and (4) 200 ha grass–clover for biogas, reduced number of livestock and import of biomass from cuttings made in ungrazed meadows. These four scenarios were compared with the current situation in organic agriculture in Denmark and to a situation where slurry from conventional agriculture is no longer imported. Implementation of anaerobic digestion changed the nitrogen flows on the farm by increasing the slurry nitrogen plant availability and introducing new nitrogen sources from legume-based energy crops or meadows. The amount of nitrogen available for application as fertilizer on the farm increased when grass–clover was used for biogas production, but decreased when maize was used. Since part of the area was used for biogas production, the total output of foodstuffs from the farm was decreased. Effects on GHG emissions and net energy production were assessed by use of the whole-farm model FarmGHG. A positive farm energy balance was obtained for all biogas scenarios, showing that biomass production for biogas on 10% of the farm area results in an energy surplus, provided that the heat from the electricity production is utilized. The energy surplus implies a displacement of fossil fuels and thereby reduced CO2 emission from the farm. Emissions of N2O were not affected substantially by biogas production. Total emissions of methane (CH4) were slightly decreased due to a 17–48% decrease in emissions from the manure store. Net GHG emission was reduced by 35–85% compared with the current situation in organic agriculture. It was concluded that production of biogas on organic farms holds the possibility for the farms to achieve a positive energy balance, provide self-sufficiency with organic fertilizer nitrogen, and reduce GHG emissions.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3146 ◽  
Author(s):  
Przemysław Seruga ◽  
Małgorzata Krzywonos ◽  
Marta Wilk

Anaerobic digestion (AD) has been used widely as a form of energy recovery by biogas production from the organic fraction of municipal solid wastes (OFMSW). The aim of this study was to evaluate the effect of the introduction of co-substrates (restaurant wastes, corn whole stillage, effluents from the cleaning of chocolate transportation tanks) on the thermophilic anaerobic digestion process of the mechanically separated organic fraction of municipal solid wastes in a full-scale mechanical-biological treatment (MBT) plant. Based on the results, it can be seen that co-digestion might bring benefits and process efficiency improvement, compared to mono-substrate digestion. The 15% addition of effluents from the cleaning of chocolate transportation tanks resulted in an increase in biogas yield by 31.6%, followed by a 68.5 kWh electricity production possibility. The introduction of 10% corn stillage as the feedstock resulted in a biogas yield increase by 27.0%. The 5% addition of restaurant wastes contributed to a biogas yield increase by 21.8%. The introduction of additional raw materials, in fixed proportions in relation to the basic substrate, increases biogas yield compared to substrates with a lower content of organic matter. In regard to substrates with high organic loads, such as restaurant waste, it allows them to be digested. Therefore, determining the proportion of different feedstocks to achieve the highest efficiency with stability is necessary.


2019 ◽  
Vol 35 (5) ◽  
pp. 503-512 ◽  
Author(s):  
Jianjun Zang ◽  
Jason C. H. Shih ◽  
Jay J. Cheng ◽  
Zhimin Liu ◽  
Ying Liu ◽  
...  

AbstractTwo solid state anaerobic digesters (SSADs), 15 L each, were set up for co-digestion of switchgrass with primary digestate of a liquid anaerobic digester (LAD) and the recirculating leachate. Both the LAD and two SSADs were operated at 50°C. The results showed that the bioreactors were not started up stably until day 16 and day 47 for reactors A and B, respectively. The supplement of LAD digestate or injection of sodium hydroxide (NaOH) into the recirculating leachate readily reinitiated the biogas production to normal daily high rates of the two individual SSADs, one on day 16 and the other on day 47. In contrast to reactor A, there was a longer lag phase for bioreactor B, however, it showed 46.2% [77.9 vs 53.3 L kg−1 volatile solid (VS)] more cumulative biogas yields, and higher reduction rate of total solid, VS, cellulose and hemicellulose of 29.5, 31, 40.6 and 15%, respectively, which was likely due to optimized pH and NaOH pretreated switchgrass during start-up period. Methane contents of biogas increased gradually and stabilized at 50% for both reactors, indicating a normal operation of anaerobic digestion lasted for at least 100 days. The determined parameters of digested residues met China organic fertilizer standard (NY 525-2012) except for high moisture and low total nutrient contents. Therefore, the product of SSAD has the potential value of organic fertilizer. It is concluded that the LAD digestate can be reused as inoculums by co-digestion with agricultural residues for biogas and organic fertilizer production in SSAD.


2020 ◽  
Vol 9 (2) ◽  
pp. 167-175
Author(s):  
Reza Naghavi ◽  
Mohammad Ali Abdoli ◽  
Abdolreza Karbasi ◽  
Mehrdad Adl

Tehran anaerobic digestion power plant has been built on the eastern margin of the urban district by the purpose of processing the organic fraction of municipal solid waste. One of the most suitable methods for the treatment of organic matter is the use of anaerobic digestion (AD) process, which in addition to significant reduction of organic solid wastes, will produce valuable energy. Contributing to maintain the environment, improve urban health, saving on fossil fuels and producing rich fertilizer for agricultural use are important advantages of anaerobic digestion. The plant has been set up in 2014 with a nominal acceptance capacity of 300 tons of organic solid wastes per day and the nominal power generation of 2000 kWe. This system has been faced with considerable challenges in terms of quantity and quality of biogas during operation. The high concentration of hydrogen sulfide (H2S) in produced biogas and the lack of appropriate technologies in the plant for biogas refining are critical for the biogas generator engine deployed in the complex. The purpose of this article is to investigate the factors affecting the quality and quantity of Tehran's AD plant biogas using various H2S reduction approaches and selection of appropriate implementing technologies. The results showed that the recirculation of the digester slurry increased the methane content by more than 30% and reduced H2S by more than 98%.©2020. CBIORE-IJRED. All rights reserved


2017 ◽  
Vol 19 (1) ◽  
pp. 6
Author(s):  
Adriano Adelson Costa ◽  
Maira Oliveira Silva ◽  
Marcos Eduardo Paron ◽  
Josirley De Fátima Corrêa Carvalho ◽  
Jorge De Lucas Júnior ◽  
...  

This work aimed to evaluate the biogas production potential of swine manure (SM) under different temperatures through the use of experimental biodigesters (EB), investigating the physical, chemical and microbiological parameters of the process. The experiment consisted of three treatments a) with solid fraction separation (WSSF), b) without solid fraction separation (W-SSF) and c) solid fraction only (OSF).  The assays were performed in triplicate and submitted  to room temperature (RT) (13.36 to 23.71° C) and to controlled temperature (30.00ºC), during 28 days. The average biogas production in the EB was 390.41 ml (WSSF), 390.53 ml (W-SSF) and 400.53 ml (OSF), at RT and 393.00 ml (WSSF), 393.00 ml (W-SSF) and 390.67 ml (OSF) at 30.00ºC. The results showed that significant differences occurred in the biogas production due to the different treatments and temperatures. The highest average reduction of parameters as a function of treatment and temperature was 53.22% for total solids in WSSF (30°C), 10.73% for nitrogen in W-SSF (RT), 27.50% for phosphorus in the WSSF (TA), 63.55% for the COD in the W-SSF (TA), 99,10% for the total coliforms in the W-SSF (TA) and 99.59% for the thermotolerant coliforms in the WSSF (30°C).


2020 ◽  
Vol 5 (2) ◽  
pp. 210-216
Author(s):  
Atmadian Pratama ◽  
Ramayanty Bulan ◽  
Darwin Darwin

Abstrak. Pemanfaatan limbah peternakan sapi (kotoran sapi) sebagai sumber bahan bakar dalam bentuk biogas merupakan salah satu alternatif yang sangat tepat untuk meningkatkan nilai tambah bagi masyarakat petani. Pemanfaatan kotoran ternak sebagai sumber energi, tidak mengurangi jumlah pupuk organik yang bersumber dari kotoran ternak. Hal ini karena pada pembuatan biogas kotoran ternak yang sudah diproses dikembalikan ke kondisi semula yang diambil hanya gas metana (CH4) yang digunakan sebagai bahan bakar. Kotoran ternak yang sudah diproses pada pembuatan biogas dipindahkan ke tempat lebih kering, dan bila sudah kering dapat disimpan dalam karung untuk penggunaan selanjutnya sebagai pupuk organik. Tandan kosong sawit (TKS) merupakan limbah dari pabrik kelapa sawit yang pemanfaatnya masih terbatas sebagai pupuk organik yang memiliki nilai tambah yang rendah. Setiap produksi kelapa sawit menghasilkan limbah berupa tandan kosong sawit  sebesar 23%, sehingga berdasarkan produksi kelapa sawit tahun 2010 dan 2011 berpotensi dihasilkan limbah tandan kosong sawit sebesar 5 juta ton. Akumulasi limbah TKS dari tahun ke tahun jika tidak dimanfaatkan secara optimal maka dapat berakibat buruk bagi lingkungan. Penelitian ini bertujuan untuk melihat potensi produksi biogas melalui teknologi anaerobik digesi (anaerobic digestion) kotoran sapi dan anaerobik co-digesi kotoran sapi dengan limbah TKS. Hasil penelitian menunjukkan bahwa pada proses fermentasi dengan hydraulic retention time (HRT) 25 hari dan pemberian suhu panas yang sama terdapat hasil yang berbeda terhadap produksi biogas kotoran sapi digesi dan juga kotoran sapi co-digesi dengan tepung TKS dengan hasil produksi biogas total lebih tinggi pada fermentasi co-digesi, dimana produksi gas yang dihasilkan adalah 1.015 mL pada kotoran sapi digesi dan 13.830  mL pada kotoran sapi co-digesi. Penambahan tepung TKS meningkatkan nutrisi substrat yang dimanfaatkan mikroba untuk menghasilkan gas metan, namun tetap memperhatikan tingkat ke optimuman derajat keasaman (pH) pada angka 6,8-7,5.Production of Biogas from Cattle Manure Digestion and Co-Digestion with Oil Palm Empty Fruit Bunch under Digestive Anaerobic MethodAbstract. Utilization of livestock waste (manure) as biogas is one of the most appropriate alternatives to overcome the rising prices of fertilizers and fuel oil scarcity. The use of livestock manure as an energy source, does not reduce the amount of organic fertilizer that comes from livestock manure. This is because in the production of biogas manure that has been processed is returned to its original condition, only methane (CH4) is used as fuel. Livestock manure that has been processed in the making of biogas is moved to a drier place, and when it is dry it can be stored in a sack for further use as fertilizer. Oil palm empty fruit bunches (TKS) are waste from palm oil mills is still limited use as organic fertilizer and has low added value. Each palm oil production produces waste in the form of 23% oil palm empty fruit bunches, so that according to the palm production on 2010 and 2011, the potential production of this waste could reach 5 million tons. The accumulation of this waste from year to year will harm our environment. This study aims to look at the potential for biogas production from cow manure digestion and co-digestion with palm oil fruit bunch waste under the anaerobic process. Results showed that for 25 days hydraulic retention time (HRT) and the use of mesophilic temperature, the biogas production by using anaerobic co-digestion of cow manure with TKS (13,830 mL) was higher than the biogas production by using the anaerobic digestion of cow manure (1,015 mL). The addition of TKS flour had increased the nutrient of substrate used by microbes to produce methane gas, but the acidity (pH)of substrate should be controlled at 6.8-7.5.  


2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document