scholarly journals Comparative Study of Automated End Tidal Control Versus Manual Fresh Gas Flow Adjustment with Respect to Gas Usage and Delivery during Low Flow Anesthesia

2020 ◽  
Vol 02 (02) ◽  
Author(s):  
Adarshchandra Swami ◽  
Kanika Arora ◽  
Padma Puppala
2019 ◽  
Author(s):  
Sirirat Tribuddharat ◽  
Thepakorn Sathitkarnmanee ◽  
Naruemon Vattanasiriporn ◽  
Maneerat Thananun ◽  
Duangthida Nonlhaopol ◽  
...  

Abstract Background Sevoflurane is suitable for low-flow anesthesia (LFA). LFA needs a wash-in phase. The reported sevoflurane wash-in schemes lack simplicity, target coverage, and applicability. We proposed a one-step 1-1-8 wash-in scheme for sevoflurane LFA to be used with both N 2 O and Air. The objective of our study was to identify time for achieving each level of alveolar concentration of sevoflurane (F A S) from 1% to 3.5% in both contexts.Methods We recruited 199 adults requiring general anesthesia with endotracheal intubation and controlled ventilation—102 in group N 2 O and 97 in group Air. After induction and intubation, a wash-in was started using a fresh gas flow of O 2 :N 2 O or O 2 :Air at 1:1 L·min -1 plus sevoflurane 8%. The ventilation was controlled to maintain end-tidal CO 2 of 30-35 mmHg.Results The rising patterns of F A S and inspired concentration of sevoflurane (F I S) are similar, running parallel between the groups. The F A S/F I S ratio increased from 0.46 to 0.72 within 260 sec in group N 2 O and from 0.42 to 0.69 within 286 sec in group Air. The respective time to achieve an F A S of 1%, 1.5%, 2%, 2.5%, 3%, and 3.5% was 1, 1.5, 2, 3, 3.5, and 4.5 min in group N 2 O and 1, 1.5, 2, 3, 4, and 5 min in group Air. The heart rate and blood pressure of both groups significantly increased initially then gradually decreased as F A S increased.Conclusions The 1-1-8 wash-in scheme for sevoflurane LFA has many advantages, including simplicity, coverage, swiftness, safety, economy, and that it can be used with both N 2 O and Air. A respective F A S of 1%, 1.5%, 2%, 2.5%, 3%, and 3.5% when used with N 2 O and Air can be expected at 1, 1.5, 2, 3, 3.5, and 4.5 min and 1, 1.5, 2, 3, 4, and 5 min. This scheme may be applied for sevoflurane LFA in situations where an anesthetic gas analyzer is unavailable.


2019 ◽  
Author(s):  
Sirirat Tribuddharat ◽  
Thepakorn Sathitkarnmanee ◽  
Naruemon Vattanasiriporn ◽  
Maneerat Thananun ◽  
Duangthida Nonlhaopol ◽  
...  

Abstract Background Sevoflurane is suitable for low-flow anesthesia (LFA). LFA needs a wash-in phase. The reported sevoflurane wash-in schemes lack simplicity, target coverage, and applicability. We proposed a one-step 1-1-8 wash-in scheme for sevoflurane LFA to be used with both N 2 O and Air. The objective of our study was to identify time for achieving each level of alveolar concentration of sevoflurane (F A S) from 1% to 3.5% in both contexts.Methods We recruited 199 adults requiring general anesthesia with endotracheal intubation and controlled ventilation—102 in group N 2 O and 97 in group Air. After induction and intubation, a wash-in was started using a fresh gas flow of O 2 :N 2 O or O 2 :Air at 1:1 L·min -1 plus sevoflurane 8%. The ventilation was controlled to maintain end-tidal CO 2 of 30-35 mmHg.Results The rising patterns of F A S and inspired concentration of sevoflurane (F I S) are similar, running parallel between the groups. The F A S/F I S ratio increased from 0.46 to 0.72 within 260 sec in group N 2 O and from 0.42 to 0.69 within 286 sec in group Air. The respective time to achieve an F A S of 1%, 1.5%, 2%, 2.5%, 3%, and 3.5% was 1, 1.5, 2, 3, 3.5, and 4.5 min in group N 2 O and 1, 1.5, 2, 3, 4, and 5 min in group Air. The heart rate and blood pressure of both groups significantly increased initially then gradually decreased as F A S increased.Conclusions The 1-1-8 wash-in scheme for sevoflurane LFA has many advantages, including simplicity, coverage, swiftness, safety, economy, and that it can be used with both N 2 O and Air. A respective F A S of 1%, 1.5%, 2%, 2.5%, 3%, and 3.5% when used with N 2 O and Air can be expected at 1, 1.5, 2, 3, 3.5, and 4.5 min and 1, 1.5, 2, 3, 4, and 5 min. This scheme may be applied for sevoflurane LFA in situations where an anesthetic gas analyzer is unavailable.


2020 ◽  
Author(s):  
Sirirat Tribuddharat ◽  
Thepakorn Sathitkarnmanee ◽  
Naruemon Vattanasiriporn ◽  
Maneerat Thananun ◽  
Duangthida Nonlhaopol ◽  
...  

Abstract Background Sevoflurane is suitable for low-flow anesthesia (LFA). LFA needs a wash-in phase. The reported sevoflurane wash-in schemes lack simplicity, target coverage, and applicability. We proposed a one-step 1-1-8 wash-in scheme for sevoflurane LFA to be used with both N 2 O and Air. The objective of our study was to identify time for achieving each level of alveolar concentration of sevoflurane (F A S) from 1% to 3.5% in both contexts. Methods We recruited 199 adults requiring general anesthesia with endotracheal intubation and controlled ventilation—102 in group N 2 O and 97 in group Air. After induction and intubation, a wash-in was started using a fresh gas flow of O 2 :N 2 O or O 2 :Air at 1:1 L·min -1 plus sevoflurane 8%. The ventilation was controlled to maintain end-tidal CO 2 of 30-35 mmHg. Results The rising patterns of F A S and inspired concentration of sevoflurane (F I S) are similar, running parallel between the groups. The F A S/F I S ratio increased from 0.46 to 0.72 within 260 sec in group N 2 O and from 0.42 to 0.69 within 286 sec in group Air. The respective time to achieve an F A S of 1%, 1.5%, 2%, 2.5%, 3%, and 3.5% was 1, 1.5, 2, 3, 3.5, and 4.5 min in group N 2 O and 1, 1.5, 2, 3, 4, and 5 min in group Air. The heart rate and blood pressure of both groups significantly increased initially then gradually decreased as F A S increased. Conclusions The 1-1-8 wash-in scheme for sevoflurane LFA has many advantages, including simplicity, coverage, swiftness, safety, economy, and that it can be used with both N 2 O and Air. A respective F A S of 1%, 1.5%, 2%, 2.5%, 3%, and 3.5% when used with N 2 O and Air can be expected at 1, 1.5, 2, 3, 3.5, and 4.5 min and 1, 1.5, 2, 3, 4, and 5 min.


2019 ◽  
Author(s):  
Sirirat Tribuddharat ◽  
Thepakorn Sathitkarnmanee ◽  
Naruemon Vattanasiriporn ◽  
Maneerat Thananun ◽  
Duangthida Nonlhaopol ◽  
...  

Abstract Background Sevoflurane is suitable for low-flow anesthesia (LFA). LFA needs a wash-in phase. The reported sevoflurane wash-in schemes lack simplicity, target coverage, and applicability. We proposed a one-step 1-1-8 wash-in scheme for sevoflurane-nitrous oxide (N2O) LFA. The objective of our study was to identify times to achieve every alveolar concentration of sevoflurane (FAS) from 1% to 3.5%. Methods We recruited 102 adults requiring general anesthesia with endotracheal intubation and controlled ventilation. After induction and intubation, a wash-in was started using a fresh gas flow of oxygen (O2):N2O at 1:1 L·min-1 plus sevoflurane 8%. The ventilation was controlled to maintain end-tidal carbon dioxide (CO2) of 30-35 mmHg. Results The rising patterns of FAS and inspired concentration of sevoflurane (FIS) are similar and parallel. The FAS/FIS ratio increased from 0.46 to 0.72 within 260 sec. The respective times to achieve FAS of 1%, 1.5%, 2%, 2.5%, 3% and 3.5% were 1, 1.5, 2, 3, 3.5, and 4.5 min. The heart rate and blood pressure significantly increased initially then gradually decreased as FAS increased. Conclusions The 1-1-8 wash-in scheme for sevoflurane has many advantages, including simplicity, coverage, swiftness, safety, and economy. A respective FAS of 1%, 1.5%, 2%, 2.5%, 3%, and 3.5% can be expected at 1, 1.5, 2, 3, 3.5, and 4.5 min. This scheme may be applied for LFA in the situation where anesthetic gas analyzer is not available.


1998 ◽  
Vol 88 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Hiromichi Bito ◽  
Yukako Ikeuchi ◽  
Kazuyuki Ikeda

Background Sevoflurane anesthesia is usually performed with fresh gas flow rates greater than 2 l/min due to the toxicity of compound A in rats and limited clinical experience with sevoflurane in low-flow systems. However, to reduce costs, it would be useful to identify ways to reduce compound A concentrations in low-flow sevoflurane anesthesia. This goal of this study was to determine if compound A concentrations can be reduced by using soda lime with water added. Methods Low-flow sevoflurane anesthesia (fresh gas flow of 1 l/min) was performed in 37 patients using soda lime with water added (perhydrated soda lime) or standard soda lime as the carbon dioxide (CO2) absorbent. The soda lime was not changed between patients, but rather was used until CO2 rebreathing occurred. The perhydrated soda lime was prepared by spraying 100 ml distilled water onto 1 kg fresh soda lime, and water was added only when a new bag of soda lime was placed into the canister. Compound A concentrations in the circle system, soda lime temperatures, inspired and end-tidal CO2 and end-tidal sevoflurane concentrations, and CO2 elimination by the patient were measured during anesthesia. Results Compound A concentrations were significantly lower for the perhydrated soda lime (1.9 +/- 1.8 ppm; means +/- SD) than for the standard soda lime (13.9 +/- 8.2 ppm). No differences were seen between the two types of soda lime with regard to the temperature of the soda lime, end-tidal sevoflurane concentrations, or CO2 elimination. Compound A concentration decreased with the total time of soda lime use for both types of soda lime. The CO2 absorption capacity was significantly less for perhydrated soda lime than for standard soda lime. Conclusions Compound A concentrations in the circuit can be reduced by using soda lime with water added. The CO2 absorption capacity of the soda lime is reduced by adding water to it, but this should not be clinically significant.


2005 ◽  
Vol 33 (5) ◽  
pp. 513-519 ◽  
Author(s):  
J-Y Park ◽  
J-H Kim ◽  
W-Y Kim ◽  
M-S Chang ◽  
J-Y Kim ◽  
...  

The effect of fresh gas flow (FGF) on isoflurane concentrations at given vaporizer settings during low-flow anaesthesia was investigated. Ninety patients (American Society of Anaesthesiologists physical status I or II) were randomly allocated to three groups (FGF 1 l/min, FGF 2 l/min and FGF 4 l/min). Anaesthesia was maintained for 10 min with vaporizer setting isoflurane 2 vol% and FGF 4 l/min for full-tissue anaesthetic uptake in a semi-closed circle system. Low-flow anaesthesia was maintained for 20 min with end-tidal isoflurane 1.5 vol% and FGF 2 l/min. FGF was then changed to FGF 1 l/min, FGF 2 l/min or FGF 4 l/min. Measurements during the 20-min period showed that inspired and end-tidal isoflurane concentrations decreased in the FGF 1-l/min group but increased in the FGF 4-l/min group compared with baseline values. No haemodynamic changes were observed. Monitoring of anaesthetic concentrations and appropriate control of vaporizer settings are necessary during low-flow anaesthesia.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 389 ◽  
Author(s):  
Petter Jakobsson ◽  
Madleine Lindgren ◽  
Jan G. Jakobsson

Background:Modern anaesthesia workstations are reassuringly tight and are equipped with effective gas monitoring, thus providing good opportunities for low/minimal flow anaesthesia. A prerequisite for effective low flow anaesthesia is the possibility to rapidly increase and decrease gas concentrations in the circle system, thereby controlling the depth of anaesthesia. Methods:We studied the wash-in and wash-out of sevoflurane in the circle system with fixed fresh gas flow and vaporizer setting. We compared two modern anaesthesia work stations, the Aisys (GE, Madison, WI, USA) and FLOW-i (Maquet, Solna, Sweden) in a test lung model. Results: We found fresh-gas flow to have, as expected, a major influence on wash-in, as well as wash-out of sevoflurane. The wash-in time to reach a stable circle 1 MAC (2.1%) decreased from an average of 547 ± 83 seconds with a constant fresh gas flow of 300 ml/min and vaporizer setting of 8%, to a mean of 38 ± 6 seconds at a fresh gas flow of 4 L/min. There were only minor differences between the two works-stations tested; the Aisys was slightly faster at both 300 and 4 L/min flow. Time to further increase circle end-tidal concentration from 1-1.5 MAC showed likewise significant associations to fresh gas and decreased from 330 ± 24 seconds at 300 ml/min. to less than a minute at constant 4 L/min (17 ± 11 seconds), without anaesthetic machine difference. Wash-out was also fresh gas flow dependent and plateaued at 7.5 L/min. Conclusions: Circle system wash-in and wash-out show clear fresh gas dependency and varies somewhat between the Aisys and Flow-i. The circle saturation, reaching 1 MAC end-tidal or increasing from 1-1.5 MAC can be achieved with both work-stations within 1.5 minutes at a constant fresh gas flow of 2 and 4 L/min. Wash-out plateaued at 7.5 L/min.


2000 ◽  
Vol 85 (6) ◽  
pp. 818-825 ◽  
Author(s):  
T.J. Sieber ◽  
C.W. Frei ◽  
M. Derighetti ◽  
P. Feigenwinter ◽  
D. Leibundgut ◽  
...  

2002 ◽  
Vol 97 (2) ◽  
pp. 400-404 ◽  
Author(s):  
Jan F. A. Hendrickx ◽  
José Coddens ◽  
Frederik Callebaut ◽  
Hermes Artico ◽  
Thierry Deloof ◽  
...  

Background Uptake of a second gas of a delivered gas mixture decreases the amount of carrier gas and potent inhaled anesthetic leaving the circle system through the pop-off valve. The authors hypothesized that the vaporizer settings required to maintain constant end-expired sevoflurane concentration (Etsevo) during minimal-flow anesthesia (MFA, fresh gas flow of 0.5 l/min) or low-flow anesthesia (LFA, fresh gas flow of 1 l/min) would be lower when sevoflurane is used in oxygen-nitrous oxide than in oxygen. Methods Fifty-six patients receiving general anesthesia were randomly assigned to one of four groups (n = 14 each), depending on the carrier gas and fresh gas flow used: group Ox.5 l (oxygen, MFA), group NOx.5 l (oxygen-nitrous oxide, MFA after 10 min high fresh gas flow), group Ox1 l (oxygen, LFA), and group NOx1 l (oxygen-nitrous oxide, LFA after 10 min high fresh gas flow). The vaporizer dial settings required to maintain Etsevo at 1.3% were compared between groups. Results Vaporizer settings were higher in group Ox.5 l than in groups NOx.5 l, Ox1 l, and NOx1 l; vaporizer settings were higher in group NOx.5 l than in group NOx1 l between 23 and 47 min, and vaporizer settings did not differ between groups Ox1 l and NOx1 l. Conclusions When using oxygen-nitrous oxide as the carrier gas, less gas and vapor are wasted through the pop-off valve than when 100% oxygen is used. During MFA with an oxygen-nitrous oxide mixture, when almost all of the delivered oxygen and nitrous oxide is taken up by the patient, the vaporizer dial setting required to maintain a constant Etsevo is lower than when 100% oxygen is used. With higher fresh gas flows (LFA), this effect of nitrous oxide becomes insignificant, presumably because the proportion of excess gas leaving the pop-off valve relative to the amount taken up by the patient increases. However, other unexplored factors affecting gas kinetics in a circle system may contribute to our observations.


Sign in / Sign up

Export Citation Format

Share Document