scholarly journals Risk analysis model in aquaponics

2020 ◽  
Vol 4 (2) ◽  
pp. 5-9
Author(s):  

This paper about aquaponic risk analysis find to identifies the main risks in an aquaponic system and how they can be minimized. Monitoring and control of essential environmental parameters is important for maintaining a healthy and stable systemin aquaponic.

2014 ◽  
Vol 971-973 ◽  
pp. 1033-1036
Author(s):  
Hui Jun Wang ◽  
Zhi Qun Yong

In view of the shortcoming such as wiring difficulties, poor scalability, and big cable usage in present mine security monitoring system, this paper puts forward a kind of substation monitoring and control system based on ZIGBEE and CAN. With the core of core, The system collects various measurement data of sensors through the ZIGBEE wireless network, realizes the to collect, and then through the CAN bus to realize the transmission of control commands and data of the up and down machine, and monitor the production parameters and environmental parameters in the coal mine. Experiments show that the monitoring substation is of high real-time performance, good stability, strong expansibility, etc., and can meet the requirements of the coal mine development and mining.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4345 ◽  
Author(s):  
Alvaro Ortiz Perez ◽  
Benedikt Bierer ◽  
Louisa Scholz ◽  
Jürgen Wöllenstein ◽  
Stefan Palzer

Schools are amongst the most densely occupied indoor areas and at the same time children and young adults are the most vulnerable group with respect to adverse health effects as a result of poor environmental conditions. Health, performance and well-being of pupils crucially depend on indoor environmental quality (IEQ) of which air quality and thermal comfort are central pillars. This makes the monitoring and control of environmental parameters in classes important. At the same time most school buildings do neither feature automated, intelligent heating, ventilation, and air conditioning (HVAC) systems nor suitable IEQ monitoring systems. In this contribution, we therefore investigate the capabilities of a novel wireless gas sensor network to determine carbon dioxide concentrations, along with temperature and humidity. The use of a photoacoustic detector enables the construction of long-term stable, miniaturized, LED-based non-dispersive infrared absorption spectrometers without the use of a reference channel. The data of the sensor nodes is transmitted via a Z-Wave protocol to a central gateway, which in turn sends the data to a web-based platform for online analysis. The results show that it is difficult to maintain adequate IEQ levels in class rooms even when ventilating frequently and that individual monitoring and control of rooms is necessary to combine energy savings and good IEQ.


2013 ◽  
Vol 288 ◽  
pp. 167-171
Author(s):  
Juan Huan ◽  
Xing Qiao Liu ◽  
Hong Yuan Wang ◽  
Hong Yuan Wang

Efficient control of DO may increase energy savings, improve productivity, and enhance sustainability for aquaculture. A new monitoring and control system of variable frequency aeration based on PID has been designed. It can real-time monitor environmental parameters such as PH, DO, temperature, and the height of water. In addition, it can control DO in time. According to the actual changes of DO, the frequency converter automatically controls the aerator’s work. The experiment indicates that the relative error of sensor’s measuring DO is controlled in ±1.3%.The system works stably and achieved the function that it can collect environment data automatically, and manage data in real time.


2015 ◽  
Vol 742 ◽  
pp. 640-647 ◽  
Author(s):  
Yan Wei Wang ◽  
Ting Hui Li ◽  
Jin Jie Bi ◽  
Hai Yan Li ◽  
Gui Yan Li

Due to the characters of large space and uneven distributing of the temperature and humidity which always exist in the warehouse, the reliability and accuracy of data are influenced when using the wireless sensor network to collect the environmental parameters which are large redundancy and errors. According to the above-mentioned characters, a self-adaptive weighted algorithm based on multi-sensor data fusion was presented. The simulation results show that, the compute of the method is simple, it needs without any prior knowledge of sensor to give the fusion value with least variance, and therefore the proposed method improves the accuracy of measured data.


Author(s):  
David C. Joy

Personal computers (PCs) are a powerful resource in the EM Laboratory, both as a means of automating the monitoring and control of microscopes, and as a tool for quantifying the interpretation of data. Not only is a PC more versatile than a piece of dedicated data logging equipment, but it is also substantially cheaper. In this tutorial the practical principles of using a PC for these types of activities will be discussed.The PC can form the basis of a system to measure, display, record and store the many parameters which characterize the operational conditions of the EM. In this mode it is operating as a data logger. The necessary first step is to find a suitable source from which to measure each of the items of interest. It is usually possible to do this without having to make permanent corrections or modifications to the EM.


2020 ◽  
Vol 139 ◽  
pp. 213-221
Author(s):  
C Birkett ◽  
R Lipscomb ◽  
T Moreland ◽  
T Leeds ◽  
JP Evenhuis

Flavobacterium columnare immersion challenges are affected by water-related environmental parameters and thus are difficult to reproduce. Whereas these challenges are typically conducted using flow-through systems, use of a recirculating challenge system to control environmental parameters may improve reproducibility. We compared mortality, bacterial concentration, and environmental parameters between flow-through and recirculating immersion challenge systems under laboratory conditions using 20 rainbow trout families. Despite identical dose concentration (1:75 dilution), duration of challenge, lot of fish, and temperature, average mortality in the recirculating system (42%) was lower (p < 0.01) compared to the flow-through system (77%), and there was low correlation (r = 0.24) of family mortality. Mean days to death (3.25 vs. 2.99 d) and aquaria-to-aquaria variation (9.6 vs. 10.4%) in the recirculating and flow-through systems, respectively, did not differ (p ≥ 0.30). Despite 10-fold lower water replacement rate in the recirculating (0.4 exchanges h-1) compared to flow-through system (4 exchanges h-1), differences in bacterial concentration between the 2 systems were modest (≤0.6 orders of magnitude) and inconsistent throughout the 21 d challenge. Compared to the flow-through system, dissolved oxygen during the 1 h exposure and pH were greater (p ≤ 0.02), and calcium and hardness were lower (p ≤ 0.03), in the recirculating system. Although this study was not designed to test effects of specific environmental parameters on mortality, it demonstrates that the cumulative effects of these parameters result in poor reproducibility. A recirculating immersion challenge model may be warranted to empirically identify and control environmental parameters affecting mortality and thus may serve as a more repeatable laboratory challenge model.


2016 ◽  
Author(s):  
Giacomo Giannoccaro ◽  
Armando Ursitti ◽  
Maurizio Prosperi

Sign in / Sign up

Export Citation Format

Share Document