Computers for data, control and simulation

Author(s):  
David C. Joy

Personal computers (PCs) are a powerful resource in the EM Laboratory, both as a means of automating the monitoring and control of microscopes, and as a tool for quantifying the interpretation of data. Not only is a PC more versatile than a piece of dedicated data logging equipment, but it is also substantially cheaper. In this tutorial the practical principles of using a PC for these types of activities will be discussed.The PC can form the basis of a system to measure, display, record and store the many parameters which characterize the operational conditions of the EM. In this mode it is operating as a data logger. The necessary first step is to find a suitable source from which to measure each of the items of interest. It is usually possible to do this without having to make permanent corrections or modifications to the EM.

1987 ◽  
Vol 20 (1) ◽  
pp. 7-17 ◽  
Author(s):  
R A Furness

Pipelines are an integral part of the world's economy and literally billions of pounds worth of fluids are moved each year in pipelines of varying lengths and diameters. As the cost of some of these fluids and the price of moving them has increased, so the need to measure the flows more accurately and control and operate the line more effectively has arisen. Instrumentation and control equipment has developed steadily in the past decade but not as fast as the computers and microprocessors that are now a part of most large scale pipeline systems. It is the interfacing of the new generation of digital and sometimes ‘intelligent’ instrumentation with smaller and more powerful computers that has led to a quiet but rapid revolution in pipeline monitoring and control. This paper looks at the more significant developments from the many that have appeared in the past few years and attempts to project future trends in the industry for the next decade.


2017 ◽  
Vol 15 ◽  
pp. 39 ◽  
Author(s):  
K. Liaropoulos ◽  
G. Zervas ◽  
V. Mavraganis ◽  
T. Broumas ◽  
G. Tsiropoulos ◽  
...  

To clarify questions regarding the effectiveness of the many different types of traps and semiochemicals used for the monitoring and the control of the Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Diptera: Τephrititae), seven trap types, four food attractants, one sex attractant and a combination of food and sex attractant, were evaluated under field conditions in orange orchards in fall. No major differences were observed between trap designs resembling the original McPhail glass trap. The plastic bottle trap of 1,5L volume, with four side openings for one-way fly entrance, proved very efficient when filled with a proteinaceous food attractant Ζ1. From the attractants, two of them, Ζ1 and Entomela showed the best performance. The combination of food and a sex attractant showed no significant synergistic effects on trap efficiency. The findings allow a better choice among trap types and attractants, available today in the market, for Medfly monitoring and control.


Author(s):  
Jean M. Capanang ◽  
Jobelle P. Panganiban ◽  
Glenn N. Ortiz ◽  
Mark Joseph B. Enojas

<p>Cleanroom parameters such as temperature, relative humidity and particle count are vital in maintaining cleanliness. People and machines working inside the cleanroom are main contributors for the sudden changes of the separameters. Measurements and monitoring of these parameters are therefore necessary to reduce rejects and downtime in the production of micro-electro-mechanical systems (MEMS). This paper presents a method of developmentof an automated data monitoring of MEMS cleanroom parametric requirements. The prototype developed uses DHT11 sensor and Sharp dust sensor for measuring the temperature, humidity and particle count respectively which are displayed in an LCD display. These parameters are recorded through a data logger for analysis and control. Additionally, agraphical user interface was also developed using visual studio for the working personnel and for supervisory monitoring and control. As a result, the possible quality compromise in the production of MEMS is detected when the monitored parameters are beyond the range.</p>


2021 ◽  
Author(s):  
Juraj Benić ◽  
Anđelko Vico ◽  
Luka Vučetić ◽  
Željko Šitum

This paper presents a novel concept of the WEB application for monitoring and control of fluid power systems. The proposed concept is based on the internet of things principles. WEB application is built on the Web2py framework which uses Python as the programming language. The client-side of the proposed application is based on the responsive open source AdminLTE dashboard. On the server-side Python is used for executing SQL queries sent to the database and for continuous data logging. The ModbusTCP protocol is used as the communication protocol between the server and systems. The application is tested on two experimental setups. The first one uses an industrial PLC and the second one is an Arduino PLC as a control device. Finally, experimental results are presented and a conclusion is given.


Author(s):  
Daniel M. Brandon

In fairy tales and traditional romance movies, the story ended when the prince found his soul mate, married her, and rode off with her into the sunset. The ending caption said: “They lived happily ever after.” Well, we know that real life is not quite that simple; after the marriage comes the most difficult (and, one hopes, interesting) part. Similarly, a great project contract and plan is of little consequence without constant monitoring and control. Once the project is planned and underway, the project manager cannot simply ride away and assume that everything will go according to plan. To insure success, many project matters need to be monitored; if a matter deviates from the plan, then some form of control must be exerted to bring the situation back in line with the plan. In this chapter I discuss the many matters that need to be monitored for IT projects, how best to monitor each matter, and what type of control actions may be appropriate for each.


2020 ◽  
Vol 18 (4) ◽  
pp. 606-613
Author(s):  
Miloš Đorđević ◽  
Vesna Paunović ◽  
Danijel Danković ◽  
Branislav Jovičić

With a special focus on the now widespread Internet of Things (IoT) technology, it offers a convenient solution for smart agriculture. This paper will introduce a smart greenhouse monitoring and control data logger system as part of a smart farm. The system is based on: a group of built-in sensors, a microcontroller with a peripheral interface (PIC) as a core and a server system and a wireless Internet using the Global System of Mobile Telecommunications (GSM) module with General Packet Radio Service (GPRS) as a communication protocol. It is possible to implement a smart agricultural service, in which the realized smart data logger system could be implemented, which enables automatic control of the greenhouse at the farm.


10.29007/v639 ◽  
2018 ◽  
Author(s):  
Johannus Wilhelmus Wouters ◽  
Jai Sankar Seelam ◽  
Klas Jan Agema

The legislative norms for treated wastewater diffuse in terms of nitrogen (N) and phosphorus (P) concentrations are becoming increasingly stringent in the EU region. Compliance with the consent values compelled the water authorities to implement moving bed biofilters (MBFs) for tertiary stage effluent polishing. However, on-site and field surveys reveal that numerous MBF units suffer from non-optimal operational conditions, logistical challenges and irregular monitoring. This makes meeting the N-P criterion quite a challenging and expensive affair. It is therefore important to optimize their day-to-day operations, facilitate access to reliable and real-time status updates, and troubleshoot the failures. In this direction, an "internet-of-things", radio frequency ID (RFID) and cloud based monitoring and control tool, Sand-Cycle, was successfully developed, tested and implemented to monitor MBFs. The current study presents full- scale application of the developed remote control and mote technology at two wastewater treatment works. Sand-Cycle illustrated real-time dashboards indicating performance grading factors viz. in-situ average sand circulation rate, active bed volume and filter homogeneity. This presented clear instructions for detected malfunctions and enabled the operators to optimize the MBF output with limited effort. Further technical and technological advancements of such IoT based setups can actively assist in tackling long-term sustainability and wastewater management issues.


Author(s):  
Helmy Fitriawan ◽  
Kholid Ali Dwi Cahyo ◽  
Sri Purwiyanti ◽  
Syaiful Alam

Oyster mushrooms (Pleurotus Ostreatus), such as white mushroom, chinese  mushroom, and warm mushroom, is one type of edible mushrooms. Oyster mushroom cultivation is usually done at the mushroom house (kumbung) which is mostly made of  bamboo.  Oyster mushrooms can grow optimally by controlling the temperature and humidity in the kumbung. Kumbung environment conditioning is usually done manually by spraying water on the planting medium every 8 hours.  But this is perceived as ineffective and requires high effort. For this reason, we need a technology that can monitor as well as control the environmental conditions inside the kumbung automatically and remotely. This paper describes the design of a system to monitor and control the temperature and humidity in the kumbung for oyster mushroom cultivation based on IoT (Internet of Things). This system is developed consisting of five parts, i.e sensor modules, microcontrollers, data loggers, actuators, and monitoring and control interfaces. The main result of this study is a remote monitoring and control of environmental conditions for oyster mushroom cultivation. The data of monitoring, in the form of temperature and humidity, are saved to the data logger and can be downloaded in the format (.csv). The system works functionally in accordance with the expected specifications, both in terms of sensor readings and actuator controlling.


2016 ◽  
Author(s):  
Giacomo Giannoccaro ◽  
Armando Ursitti ◽  
Maurizio Prosperi

Sign in / Sign up

Export Citation Format

Share Document