MATHEMATICAL MODEL AND CFD SIMULATION OF A DOUBLE TUBE HEAT EXCHANGER

Author(s):  
Daniel Florez ◽  
Elena Peñaranda ◽  
Abdul Orlando Cárdenas Gómez ◽  
ENIO BANDARRA FILHO
Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3399
Author(s):  
Dawid Taler ◽  
Jan Taler ◽  
Marcin Trojan

The paper presents an analytical mathematical model of a car radiator, which takes into account various heat transfer coefficients (HTCs) on each row of pipes. The air-side HTCs in a specific row of pipes in the first and second passes were calculated using equations for the Nusselt number, which were determined by CFD simulation by the ANSYS program (Version 19.1, Ansys Inc., Canonsburg, PA, USA). The liquid flow in the pipes can be laminar, transition, or turbulent. When changing the flow form from laminar to transition and from transition to turbulent, the HTC continuity is maintained. Mathematical models of two radiators were developed, one of which was made of round tubes and the other of oval tubes. The model allows for the calculation of the thermal output of every row of pipes in both passes of the heat exchangers. Small relative differences between the total heat flow transferred in the heat exchanger from hot water to cool air exist for different and uniform HTCs. However, the heat flow rate in the first row is much higher than the heat flow in the second row if the air-side HTCs are different for each row compared to a situation where the HTC is constant throughout the heat exchanger. The thermal capacities of both radiators calculated using the developed mathematical model were compared with the results of experimental studies. The plate-fin and tube heat exchanger (PFTHE) modeling procedure developed in the article does not require the use of empirical correlations to calculate HTCs on both sides of the pipes. The suggested method of calculating plate-fin and tube heat exchangers, taking into account the different air-side HTCs estimated using CFD modelling, may significantly reduce the cost of experimental research for a new design of heat exchangers implemented in manufacturing.


2021 ◽  
Author(s):  
Dawid Taler ◽  
Jan Taler ◽  
Marcin Trojan

The chapter provides an analytical mathematical model of a car radiator, which includes different heat transfer coefficients (HTCs) on the first and second row of pipes. The air-side HTCs in the first and second row of pipes in the first and second pass were calculated using the correlations for the Nusselt number, which were determined by CFD simulation using the ANSYS software. Mathematical models of two radiators were built, one of which was manufactured of round tubes and the other of oval tubes. The model permits the determination of thermal output of the first and second row of tubes in the first and second pass. The small relative differences between the thermal capacities of the heat exchanger occur for different and uniform HTCs. However, the heat flow rate in the first row is much greater than the heat flow in the second row if the air-side HTCs are different on the first and second tube row compared to a case where the HTC is uniform in the whole heat exchanger. The heat transfer rates in both radiators calculated using the developed mathematical model were compared with those determined experimentally. The method for modeling of plate-fin and tube heat exchanger (PFTHE) proposed in the paper does not require empirical correlations to calculate HTCs both on the air side and on the inner surfaces of pipes. The presented method of calculating PFTHEs, considering different air-side HTCs evaluated using CFD modeling, may considerably reduce the cost of experimental research concerning new design heat exchangers implemented in manufacturing.


Energy generation to the present growing population is a crucial challenge for the power sector. Heat exchangers (HE) plays an important role in the industrial development. In this present work an attempt is made to develop a Shell-and- Tube Heat Exchanger (STHE) with segmental baffles using commercial CATIA V5 and Autodesk CFD Simulation Softwares. TEMA standards are considered for design of STHE with baffle-cut of 25%. 3-different sets of fluids are allowed to pass through the shell and tube sides i.e. Methanol - Sea Water (M-S), Distilled Water – Raw Water (D-R) and Kerosene- Crude Oil (K-C). The boundary conditions imposed for analysis are fluid inlet temperatures and velocities. ϵ-NTU is employed for the validation of simulation results and found good agreement between them. Results are plotted for temperature, pressure and velocity contours. The performance of the STHE is shown best for the K-C fluid set among other fluid sets.


Author(s):  
M. Sabari ◽  
D. Channankiah ◽  
D. Shivalingappa

Heat exchanger plays a major role in almost all mechanical industries. Enhancement of heat transfer surface plays major role in numerous applications such as in heat exchangers, refrigeration and air conditioning systems etc. This paper examines the fluid flow and heat exchange on the air side of a multi-row fin-and-tube heat exchanger. A brief comparison is given between fin-and-tube heat exchanger attributes with louvered fins in a wider range of operating conditions defined by inlet air velocities. The brief representation on the calculated data for the louvered heat exchanger shows better heat transfer characteristics with a slightly higher pressure drop. The CFD procedure is validated by comparing the numerical simulation results with different inlet air velocities. Best combination of higher heat transfer and minimum pressure drop are occurred in inlet air velocity of 2.5 m/s.


2018 ◽  
Vol 240 ◽  
pp. 02011
Author(s):  
Tomasz Stelmach

This paper presents the experimental and numerical investigation of flow distribution in the tubular space of cross-flow fin-and-tube heat exchanger. The tube bundle with two rows arranged in staggered formation is considered. A standard heat exchanged manifold, with inlet nozzle pipe located asymmetrically is considered. The outlet nozzle pipe is located in the middle of the outlet manifold. A developed experimental setup allows one to measure volumetric flow rate in heat exchanger tubes using the ultrasonic flowmeters. The measurement results are then compared with CFD simulation in ANSYS CFX code using the SSG Reynolds Stress turbulence model, and a good agreement is found for tube Re numbers varied from 1800 to 3100.


2004 ◽  
Vol 27 (8) ◽  
pp. 965-973 ◽  
Author(s):  
Jian Liu ◽  
WenJian Wei ◽  
GouLiang Ding ◽  
Chunlu Zhang ◽  
Masaharu Fukaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document