scholarly journals Performance Evaluation of Shell-and-Tube Heat Exchanger with 3-Fluid Sets using CFD and NTU

Energy generation to the present growing population is a crucial challenge for the power sector. Heat exchangers (HE) plays an important role in the industrial development. In this present work an attempt is made to develop a Shell-and- Tube Heat Exchanger (STHE) with segmental baffles using commercial CATIA V5 and Autodesk CFD Simulation Softwares. TEMA standards are considered for design of STHE with baffle-cut of 25%. 3-different sets of fluids are allowed to pass through the shell and tube sides i.e. Methanol - Sea Water (M-S), Distilled Water – Raw Water (D-R) and Kerosene- Crude Oil (K-C). The boundary conditions imposed for analysis are fluid inlet temperatures and velocities. ϵ-NTU is employed for the validation of simulation results and found good agreement between them. Results are plotted for temperature, pressure and velocity contours. The performance of the STHE is shown best for the K-C fluid set among other fluid sets.

Author(s):  
Mahmoud Galal Yehia ◽  
Ahmed A. A. Attia ◽  
Osama Ezzat Abdelatif ◽  
Essam E. Khalil

In the present paper, simulation for shell and tube heat exchanger investigated using CFD techniques. Numerical simulations of the turbulent, three-dimensional fluid flow and heat transfer are performed using Ansys Fluent 6.3. The effect of friction characteristics on the model of heat exchanger is discussed. A RNG κ-ε turbulence model with non-equilibrium wall function and 2nd order upwind is used. The present model is validated with the experimental literature and show a good agreement. The numerical results of the present study predict reasonably agree well with available correlations. Finally the present study model can be used to model a shell and tube heat exchanger with a satisfactory accuracy level in predictions.


2021 ◽  
Vol 947 (1) ◽  
pp. 012008
Author(s):  
Trung Kim Nguyen ◽  
Tuan Nguyen Ba ◽  
Pha Bui Ngoc ◽  
Abdul Mutalib Embong ◽  
Ngoc Nguyen Thi Nhu ◽  
...  

Abstract The aim of this paper is to propose a model to simulate the behaviour of water flows in shell and tube heat exchanger. Particularly, the continuity equation, the general heat transfer equations and the energy equation in COMSOL Multiphysics software were implemented in the numerical modelling. Besides, the experiment was also conducted to validate the proposed COMSOL model. The water temperature at locations close to the inlet and outlet of the shell side was respectively predicted at 31.5°C and 34.6°C in the simulation, and it was respectively measured at 31.5°C and 35°C in the experiment. These findings showed that the simulation results had a good agreement with the experiment. Next, this model was extended to simulate the overall heat coefficient and the pressure drops of the water flows in such heat exchanger. The overall heat coefficient was at 736.62 W/m2K. The pressure drops at the inlet/outlet areas of the shell and tubes were at 849.93 Pa and 6255.50 Pa, respectively. Conclusive evidence showed that the proposed model is a reliable method for studying the heat transfer behaviour of the shell and heat exchanger.


Author(s):  
Vivek Singh Parihar ◽  
◽  
Shrikant Pandey ◽  
Rakesh Kumar Malviya ◽  
Palash Goyal ◽  
...  

The objective of this study is to simulate the performance of helical tube shell and tube heat exchanger with several optimization techniques using computational fluid dynamics CFD. To check the performance of a designed model of heat exchanger various techniques are available. In this study, the various possible model of the heat exchanger to enhance the performance of the device have been designed. Firstly, the straight tube is replaced by helical tube in the heat exchanger and used 10, 12, 14 number of helical baffles with 50% baffle cut. Total ten models have been developed. These models are model-I 4-turns without baffle, model-II 4-turns with 10 number baffles, model-III 5-turns without baffle, model-IV 5-turns with 12 number baffles, model-V 6-turns without baffle, model-VI 6-turns with 10 number baffles 0.083m baffle space, model-VII 6-turns with 12 number 0.083m baffle space, model-VIII 6-turns with 14 number baffles 0.064m baffle space, model-IX 7-turns without baffle, model-X 7-turns with 14 number baffles, different number of baffles and baffle space with 50% baffle cut and used CUO nanofluid model-XI 6-turns with 14 number baffle CUO fluid 0.083m baffle space CFD analysis simulation done on ANSYS FLUENT 18. The simulated result shows that the model XI is approximately 40% more optimized as compared to model-I and approximately 24% than model-VIII. It also found that the high heat transfer obtains with increased number of baffles.


Author(s):  
Leonardo Cavalheiro Martinez ◽  
Leonardo Cavalheiro Martinez ◽  
Viviana Mariani ◽  
Marcos Batistella Lopes

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Sign in / Sign up

Export Citation Format

Share Document