scholarly journals Effects of Ultraviolet Radiation (UVR) and Other Environmental Stressors on the Development of Intertital Mollusc Embryos

2021 ◽  
Author(s):  
◽  
Janine Mary Russell

<p>Ozone depletion is a humaninduced global phenomenon that allows increased ultraviolet radiation (UVR) to the Earth's surface. Although UVR is known to be harmful, relatively little is known about how increased UVR impacts natural ecosystems. Ecosystems in New Zealand are particularly at risk, because ozone depletion is much greater here, with levels of biologically harmful UVR up to two times greater than in northern latitudes. In the intertidal environment, potentially negative abiotic stressors are associated with low tide; and organisms inhabiting this environment are particularly vulnerable to UVR. Furthermore, embryos and larvae deposited in this habitat are especially susceptible to these stressors. The aim of this study is to identify the effect of UVR and other environmental stressors on the development of mollusc embryos in New Zealand. Surveys of microhabitats in which egg mass deposition occurs, and what effect this site of deposition has on the survivorship of embryos, revealed that encapsulated embryos of the two common pulmonate limpets Benhamina obliquata and Siphonaria australis are highly vulnerable to the environmental stressors associated with different microhabitats. In particular, egg masses deposited in the sun for both species suffered high mortality. Although, B. obliquata is more susceptible to UVR damage than is S. australis, B. obliquata predominantly deposits egg masses in dry shaded microhabitats while S. australis deposits the majority of its offspring in sunny tidal pools, which surprisingly equated to highest embryonic mortality. Results of manipulative experiments reflected those found in the surveys: egg masses exposed to full spectrum light incurred the greatest embryonic mortality; additionally environmental stressors (e.g. tidal pool conditions and desiccation) synergistically enhanced this mortality. UVR in North America is significantly lower compared to New Zealand; this allowed a unique opportunity to use identical methods to examine the responses of ecologically similar, related species (bubble shell snails in the genus Haminoea), from two regions where UVR naturally differs. Results from surveys and manipulative experiments revealed that the New Zealand species Haminoea zelandiae suffered high embryonic mortality under full spectrum light and this mortality was enhanced by periods of desiccation. The North American species Haminoea vesicula also suffered significant mortality during periods of desiccation, but there were no signs of UVR damage. These results appear to be driven by speciesspecific vulnerability to these stressors and not to ambient UVR intensity in the regions at the time of study. Relative concentrations of the chemical sunscreen compounds, mycosporinelike amino acids (MAAs), varied depending on several factors, but the biggest differences were among species. Analyses revealed that B. obliquata had the highest concentration of MAAs despite suffering high embryonic mortality when exposed to direct sunlight. MAA concentrations in S. australis were intermediate, with H. zelandiae having the lowest concentrations of all three species. MAA concentration for B. obliquata was dependent on stage of development and initial sun exposure at egg mass deposition site, suggesting interactions between MAAs, environmental conditions and embryonic development that need to be further explored. MAA concentrations were higher in S.australis egg masses deposited in spring compared to those deposited in early autumn, which may be driven by a shift in diet or nutrient levels. MAA concentrations did not appear to be correlated with ambient levels of UVR or embryonic survival in S.australis. However, MAA concentrations were related to UV irradiance in both Haminoea species with higher MAA concentrations observed in egg masses initially deposited in the sun compared to those found in the shade. Combined these results suggest: (1) increased UVR due to ozone depletion together with increases in temperatures due to climate change are likely to have strong impacts on the early life stages of these species, unless behavioural and physiological adaptations occur; (2) New Zealand species may be at particularly high risk from UVR damage compared to those from the Northern hemisphere; (3) the role of MAAs as photo-protection in these mollusc species is likely to be species specific, with a variety of abiotic and biotic factors influencing their uptake and sequestration. These experiments in part demonstrate how New Zealand's mollusc species are responding to humaninduced changes in UVR levels.</p>

2021 ◽  
Author(s):  
◽  
Janine Mary Russell

<p>Ozone depletion is a humaninduced global phenomenon that allows increased ultraviolet radiation (UVR) to the Earth's surface. Although UVR is known to be harmful, relatively little is known about how increased UVR impacts natural ecosystems. Ecosystems in New Zealand are particularly at risk, because ozone depletion is much greater here, with levels of biologically harmful UVR up to two times greater than in northern latitudes. In the intertidal environment, potentially negative abiotic stressors are associated with low tide; and organisms inhabiting this environment are particularly vulnerable to UVR. Furthermore, embryos and larvae deposited in this habitat are especially susceptible to these stressors. The aim of this study is to identify the effect of UVR and other environmental stressors on the development of mollusc embryos in New Zealand. Surveys of microhabitats in which egg mass deposition occurs, and what effect this site of deposition has on the survivorship of embryos, revealed that encapsulated embryos of the two common pulmonate limpets Benhamina obliquata and Siphonaria australis are highly vulnerable to the environmental stressors associated with different microhabitats. In particular, egg masses deposited in the sun for both species suffered high mortality. Although, B. obliquata is more susceptible to UVR damage than is S. australis, B. obliquata predominantly deposits egg masses in dry shaded microhabitats while S. australis deposits the majority of its offspring in sunny tidal pools, which surprisingly equated to highest embryonic mortality. Results of manipulative experiments reflected those found in the surveys: egg masses exposed to full spectrum light incurred the greatest embryonic mortality; additionally environmental stressors (e.g. tidal pool conditions and desiccation) synergistically enhanced this mortality. UVR in North America is significantly lower compared to New Zealand; this allowed a unique opportunity to use identical methods to examine the responses of ecologically similar, related species (bubble shell snails in the genus Haminoea), from two regions where UVR naturally differs. Results from surveys and manipulative experiments revealed that the New Zealand species Haminoea zelandiae suffered high embryonic mortality under full spectrum light and this mortality was enhanced by periods of desiccation. The North American species Haminoea vesicula also suffered significant mortality during periods of desiccation, but there were no signs of UVR damage. These results appear to be driven by speciesspecific vulnerability to these stressors and not to ambient UVR intensity in the regions at the time of study. Relative concentrations of the chemical sunscreen compounds, mycosporinelike amino acids (MAAs), varied depending on several factors, but the biggest differences were among species. Analyses revealed that B. obliquata had the highest concentration of MAAs despite suffering high embryonic mortality when exposed to direct sunlight. MAA concentrations in S. australis were intermediate, with H. zelandiae having the lowest concentrations of all three species. MAA concentration for B. obliquata was dependent on stage of development and initial sun exposure at egg mass deposition site, suggesting interactions between MAAs, environmental conditions and embryonic development that need to be further explored. MAA concentrations were higher in S.australis egg masses deposited in spring compared to those deposited in early autumn, which may be driven by a shift in diet or nutrient levels. MAA concentrations did not appear to be correlated with ambient levels of UVR or embryonic survival in S.australis. However, MAA concentrations were related to UV irradiance in both Haminoea species with higher MAA concentrations observed in egg masses initially deposited in the sun compared to those found in the shade. Combined these results suggest: (1) increased UVR due to ozone depletion together with increases in temperatures due to climate change are likely to have strong impacts on the early life stages of these species, unless behavioural and physiological adaptations occur; (2) New Zealand species may be at particularly high risk from UVR damage compared to those from the Northern hemisphere; (3) the role of MAAs as photo-protection in these mollusc species is likely to be species specific, with a variety of abiotic and biotic factors influencing their uptake and sequestration. These experiments in part demonstrate how New Zealand's mollusc species are responding to humaninduced changes in UVR levels.</p>


2021 ◽  
Author(s):  
◽  
Jeannine Fischer

<p>Salinity, temperature and ultraviolet-B (UV-B) radiation are common environmental stressors in coastal habitats. These stressors are likely to increase in intensity due to the effects of climate change and can have important impacts on population and community dynamics for early development in gastropods that deposit egg masses on rocky shores. The aim of this study was to identify the effects of single and multiple stressors on the development of intertidal and shallow subtidal gastropods with encapsulated embryos. In manipulative experiments I exposed egg masses of the gastropod species Siphonaria australis, Ercolania felina, Pleurobranchaea maculata, Aplysia juliana and Doris wellingtonensis to realistic levels of either salinity, temperature or UV-B radiation, or to a combination of stressors, for different lengths of time. Embryos were then subjected to the most stressful levels of each stressor at either early or late stages of development and at different days of embryonic development. Further, egg masses were exposed to sublethal salinity, temperature and UV-B radiation stress simultaneously, simulating tide pool conditions on a warm sunny summer day. Larvae hatching from stressed and unstressed egg masses were subsequently periodically subjected to increased temperature and UV-B radiation and examined over 10 days to detect possible carry-over effects of exposure to stress in the egg mass. The results revealed that for individual stressors, low salinity (20‰), high temperature (25°C) and high UV-B (1.7 W m ⁻ ² s ⁻ ¹, i.e. a level similar to a sunny NZ summer day) all caused the highest embryonic mortality. The response to stressors was species-specific but overall the intertidal species had lower embryonic mortality than the subtidal species. Generally, chronic exposure had higher impacts on the development of embryos than periodic exposure and early embryonic development stages were most vulnerable to stress. UV-B radiation had particularly damaging effects on embryonic and larval stages for the intertidal pulmonate limpet Siphonaria australis. Further, multiple stressors had synergistic effects and caused high embryonic mortality in the egg mass as well as impacting on the vulnerability of larvae to stressors. This study revealed that stress experienced during embryonic stages can result in sub-lethal damage that increases vulnerability to temperature and decreases vulnerability to UV-B radiation experienced in the larval stage. In total, my results suggest that (1) the effects of different environmental stressors on early development of intertidal and subtidal gastropods are complex and depend on the intensity, duration and time of stress, and are generally species-specific; (2) multiple stressors can act synergistically to affect early development and (3) sublethal exposure to stress in the egg mass can have negative carry-over effects on later larval stages.</p>


2021 ◽  
Author(s):  
◽  
Jeannine Fischer

<p>Salinity, temperature and ultraviolet-B (UV-B) radiation are common environmental stressors in coastal habitats. These stressors are likely to increase in intensity due to the effects of climate change and can have important impacts on population and community dynamics for early development in gastropods that deposit egg masses on rocky shores. The aim of this study was to identify the effects of single and multiple stressors on the development of intertidal and shallow subtidal gastropods with encapsulated embryos. In manipulative experiments I exposed egg masses of the gastropod species Siphonaria australis, Ercolania felina, Pleurobranchaea maculata, Aplysia juliana and Doris wellingtonensis to realistic levels of either salinity, temperature or UV-B radiation, or to a combination of stressors, for different lengths of time. Embryos were then subjected to the most stressful levels of each stressor at either early or late stages of development and at different days of embryonic development. Further, egg masses were exposed to sublethal salinity, temperature and UV-B radiation stress simultaneously, simulating tide pool conditions on a warm sunny summer day. Larvae hatching from stressed and unstressed egg masses were subsequently periodically subjected to increased temperature and UV-B radiation and examined over 10 days to detect possible carry-over effects of exposure to stress in the egg mass. The results revealed that for individual stressors, low salinity (20‰), high temperature (25°C) and high UV-B (1.7 W m ⁻ ² s ⁻ ¹, i.e. a level similar to a sunny NZ summer day) all caused the highest embryonic mortality. The response to stressors was species-specific but overall the intertidal species had lower embryonic mortality than the subtidal species. Generally, chronic exposure had higher impacts on the development of embryos than periodic exposure and early embryonic development stages were most vulnerable to stress. UV-B radiation had particularly damaging effects on embryonic and larval stages for the intertidal pulmonate limpet Siphonaria australis. Further, multiple stressors had synergistic effects and caused high embryonic mortality in the egg mass as well as impacting on the vulnerability of larvae to stressors. This study revealed that stress experienced during embryonic stages can result in sub-lethal damage that increases vulnerability to temperature and decreases vulnerability to UV-B radiation experienced in the larval stage. In total, my results suggest that (1) the effects of different environmental stressors on early development of intertidal and subtidal gastropods are complex and depend on the intensity, duration and time of stress, and are generally species-specific; (2) multiple stressors can act synergistically to affect early development and (3) sublethal exposure to stress in the egg mass can have negative carry-over effects on later larval stages.</p>


Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


2020 ◽  
Vol 11 (2) ◽  
pp. 188-203
Author(s):  
Roy Jones ◽  
Tod Jones

In the speech in which the phrase ‘land fit for heroes’ was coined, Lloyd George proclaimed ‘(l)et us make victory the motive power to link the old land up in such measure that it will be nearer the sunshine than ever before … it will lift those who have been living in the dark places to a plateau where they will get the rays of the sun’. This speech conflated the issues of the ‘debt of honour’ and the provision of land to those who had served. These ideals had ramifications throughout the British Empire. Here we proffer two Antipodean examples: the national Soldier Settlement Scheme in New Zealand and the Imperial Group Settlement of British migrants in Western Australia and, specifically, the fate and the legacy of a Group of Gaelic speaking Outer Hebrideans who relocated to a site which is now in the outer fringes of metropolitan Perth.


1997 ◽  
Vol 75 (6) ◽  
pp. 773-789 ◽  
Author(s):  
Eric J. Dumdei ◽  
Julia Kubanek ◽  
John E. Coleman ◽  
Jana Pika ◽  
Raymond J. Andersen ◽  
...  

Chemical investigations of Cadlinaluteomarginata skin extracts, egg masses, and dietary sponges have led to the identification of the novel terpenoids cadlinaldehyde (30), spongian 32, seco-spongian 35, 20-acetoxy-12-marginatone (38), and lutenolide (39) from the nudibranch skin extracts, the new drimane sesquiterpenoid 1α,2α-diacetoxyalbicanyl acetate (40) from the nudibranch's egg mass, and the new sesquiterpenoids O-methyl-9-oxofurodysininlactone (47), 2-oxomicro-cionin-2-lactone (48), and O-methyl-2-oxomicrocionin-2-lactone (49), from the dietary sponge Pleraplysilla sp. The known terpenoids furodysinin (1), furodysin (16), marginatafuran (21), and 9,11-dihydrogracillin A (37), which have been frequently isolated from C. luteomarginata skin extracts, were found for the first time in extracts of the dietary sponges Pleraplysilla sp. and Aplysilla sp. One of the new terpenoids, cadlinaldehyde (30), has an unprecedented degraded sesterterpenoid skeleton. Keywords: nudibranch, sponge, terpenoids, structure elucidation.


1987 ◽  
Vol 119 (3) ◽  
pp. 251-263 ◽  
Author(s):  
S.M. Smith ◽  
M. Hubbes ◽  
J.R. Carrow

AbstractDuring 1982 and 1984, ground releases of Trichogramma minutum Riley were assessed for control of the spruce budworm, Choristoneura fumiferana (Clemens), on 12- to 20-year-old, white spruce stands in northern Ontario. Maximum parasitism of susceptible egg masses was 16 and 87% following the release of 480 000 and 12 million female T. minutum per hectare, respectively. Releases at intervals of 1 week maintained parasitism of susceptible egg masses at constant levels throughout the oviposition period of spruce budworm. When parasitism of susceptible egg masses was maintained above 78.2% during the ovipositional period, total egg mass parasitism averaged 58.0% and resulted in an 80.3% reduction of overwintering 2nd-instar larvae. The optimal strategy for reducing spruce budworm was two releases of T. minutum at an interval of 1 week in the ovipositional period. This allowed a second generation of parasitoids to emerge from the spruce budworm eggs that were more efficient in maintaining high levels of parasitism than those emerging from the standard rearing host. Natural parasitism of spruce budworm egg masses was less than 4% and there was no carryover of parasitism in the years following inundative release. The rate of T. minutum release necessary to achieve effective mortality of spruce budworm during outbreak populations is discussed briefly.


1989 ◽  
Vol 67 (10) ◽  
pp. 2345-2351 ◽  
Author(s):  
Pei-Yuan Qian ◽  
Fu-Shiang Chia

Adult specimens and egg masses of Rhaphidrilus nemasoma were collected in the low intertidal zone from Execution Rock, Bamfield, Vancouver Island, British Columbia, in June of 1986. Each egg mass contained about 1000 eggs. The eggs were green, spherical, and measured 125–145 μm in diameter. Larval development took place within the egg mass until the three-or four-setiger stage, at which time they emerged from the egg mass. Newly emerged larvae crawled on the bottom of the culture beakers and fed on benthic diatoms. Metamorphosis took place soon after emergence and was completed within 2 weeks. Paddle cilia were observed at the early trochophore stage, and their possible function, and the extremely high fecundity of this polychaete, are discussed.


On 5 May 1768 Lieutenant James Cook was chosen by the Admiralty to take command of a Royal Society expedition funded by George III on the ship Endeavour , the purpose being to sail to a suitable point (Tahiti) in the Southern Pacific from which to observe the transit of Venus across the Sun on 3 June 1769. It was thought that, by observing the transit from different points on Earth, it would be possible to determine the distance of the Earth from both Venus and the Sun. The Royal Society asked that Joseph Banks (then a young Fellow aged 25) and a group of seven be allowed to join. Among them were two artists, Alexander Buchan and Sydney Parkinson, who were employed to draw views and specimens of natural historical interest, and Daniel Carl Solander a distinguished Swedish natural historian. Banks’s enthusiasm ensured that the voyage was exceptionally well equipped to handle natural historical discoveries. Having observed the transit of Venus, Cook was secretly under orders from the Admiralty then to sail to 40° south in search of the supposed Great Southern Continent; if not encountered, he was then to head due west to find the east coast of New Zealand. Following these instructions, Cook arrived at New Zealand on 6 October 1769. He then initiated the first detailed geographical survey of New Zealand, and Banks and Solander began putting together their rich collections of New Zealand flora; Cook also observed the transit of Mercury in Mercury Bay. On his second voyage in 1772 Cook went further south, entered the Antarctic circle twice (to 71° 10' S) and ruled out the existence of a Great Southern Continent, and first defined Antarctica as we know it. He returned to London in 1775 to be promoted to Captain and elected to the Royal Society. Banks went on to be elected President in 1778, a post which he held for nearly 42 years. Three other ties between Cook and the Royal Society include the naming of the Society Islands after his sponsors, the testing of a new chronometer for them, and a report to the Society on scurvy, which was to have great consequences for the future health of seamen. The Royal Society was thus instrumental in making possible Cook’s voyages, the outcome of which was a set of pioneering geographical, botanical, geological and anthropological descriptions of New Zealand. Here we trace some aspects of the subsequent interactions between New Zealand and the Royal Society by outlining the careers of relevant Fellows, namely (a) those foreign-born Fellows (30 identified) who spent parts of their careers in New Zealand, and (b) those New Zealand-born scientists (34) who have been elected Fellows for their work, whether carried out in New Zealand or elsewhere.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 840
Author(s):  
Barbara Bittau ◽  
Maria Luisa Dindo ◽  
Giovanni Burgio ◽  
Giuseppino Sabbatini-Peverieri ◽  
Kim Alan Hoelmer ◽  
...  

Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), a pest of Asian origin, has been causing severe damage to Italian agriculture. The application of classical biological control by the release of Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae), an exotic egg parasitoid, appears to be one promising solution. In Italy, releases of T. japonicus in the field were authorized in 2020. In this study, some parameters that could influence the rearing of T. japonicus in insectaries were investigated. A significantly higher production of progeny was observed on host eggs stored at 6 °C (86.5%) compared to −24 °C (48.8%) for up to two months prior to exposure to parasitism. There were no significant differences in progeny production from single females in a vial provided with only one egg mass (83.2%) or 10 females inside a cage with 6 egg masses (83.9%). The exposure of parasitoids to refrigerated (6 °C) egg masses of H. halys for 72 h led to a significantly higher production of progeny (62.1%) compared to shorter exposures for 48 (44.0%) or 24 h (37.1%). A decline in production of progeny by the same female was detected between the first (62.1%) and the second parasitization (41.3%). Adult parasitoids stored at 16 °C for up to 90 days had an 87.1% survival rate, but a significant decrease in progeny production was detected. These parameters could be adjusted when rearing T. japonicus for specific aims such as the production of individuals for field release or colony maintenance.


Sign in / Sign up

Export Citation Format

Share Document