scholarly journals Recovery of Subtidal Benthic Macroinvertebrate Communities Following Natural and Experimental Disturbances

2021 ◽  
Author(s):  
◽  
Kerstin Kroger

<p>The recovery processes of subtidal benthic macroinvertebrate communities following large-scale natural and meso-scale experimental disturbances were studied in Wellington Harbour, New Zealand, a temperate semi-enclosed embayment. This is the first time that long-term effects (>1 year post-disturbance) of a naturally occurring toxic plankton bloom have been investigated in the Southern hemisphere. For 2 years macroinvertebrate communities were studied at three sites of differing hydrodynamic regime. Samples were taken with a Van Veen grab and washed through a 500 [mu]m mesh. Community recovery following the bloom was site-specific. Multivariate analyses revealed that at two sites community recovery was not completed >3 years post-bloom, whereas at the third site the community composition oscillated from year to year, but did not show any signs of a sequential recovery process. The hydrodynamic regime was identified as a major factor influencing the observed recovery processes. Communities exposed to an active hydrodynamic regime were less affected by the bloom and recovered faster, as they were naturally in a perpetual state of recovery as indicated by a dominance of r-selected species. The community at the hydrodynamically less active site was more affected by the bloom. Complete recovery to the pre-disturbance climax community dominated by K-selected species was estimated to take 4-5 years, if not interrupted by other disturbances. For the first time a defaunation experiment was conducted in a hydrodynamically active site to mimic the effects of a plankton bloom on the benthic macroinvertebrate community. Three sediment plots of 25 m2 were covered by plastic tarpaulins, thereby creating a benthic die-off caused by oxygen depletion. This method of defaunation had not been used in the subtidal before. Community recovery was studied for 1 year and compared with community composition in undisturbed control plots. Macroinvertebrate samples were taken by diver-operated cores and washed through a 500 [mu]m mesh. Recovery was slow until after 70 days when abundance and number of species increased synchronously in disturbed and control plots. Multivariate analyses showed that community composition fluctuated strongly in the first 100 days. After 1 year, although disturbed and control communities were converging, differences in community composition were still significant. Time for complete recovery was estimated to be approximately 2 years. Predictions of current succession models were generally fulfilled in both studies. Recovered communities were similar in their composition to either pre-disturbance or surrounding communities. The major deviation from model predictions was that no abundance peak of opportunistic species occurred in either study. Timing of the disturbance, in both studies past the major macroinvertebrate recruitment peak, and the hydrodynamic regime were identified as major factors influencing recovery processes of the communities studied. Such deviation from model predictions indicates that the general models cannot take into account the multiplicity and complexity of factors influencing recovery processes. Thus, their applicability in predicting recovery times and endpoints for specific disturbances at specific locations is limited. Location-specific models might be a useful alternative. Recommendations are made to combine uni- and multivariate techniques to assess recovery processes due to their different sensibilities to changes in community composition.</p>

2021 ◽  
Author(s):  
◽  
Kerstin Kroger

<p>The recovery processes of subtidal benthic macroinvertebrate communities following large-scale natural and meso-scale experimental disturbances were studied in Wellington Harbour, New Zealand, a temperate semi-enclosed embayment. This is the first time that long-term effects (>1 year post-disturbance) of a naturally occurring toxic plankton bloom have been investigated in the Southern hemisphere. For 2 years macroinvertebrate communities were studied at three sites of differing hydrodynamic regime. Samples were taken with a Van Veen grab and washed through a 500 [mu]m mesh. Community recovery following the bloom was site-specific. Multivariate analyses revealed that at two sites community recovery was not completed >3 years post-bloom, whereas at the third site the community composition oscillated from year to year, but did not show any signs of a sequential recovery process. The hydrodynamic regime was identified as a major factor influencing the observed recovery processes. Communities exposed to an active hydrodynamic regime were less affected by the bloom and recovered faster, as they were naturally in a perpetual state of recovery as indicated by a dominance of r-selected species. The community at the hydrodynamically less active site was more affected by the bloom. Complete recovery to the pre-disturbance climax community dominated by K-selected species was estimated to take 4-5 years, if not interrupted by other disturbances. For the first time a defaunation experiment was conducted in a hydrodynamically active site to mimic the effects of a plankton bloom on the benthic macroinvertebrate community. Three sediment plots of 25 m2 were covered by plastic tarpaulins, thereby creating a benthic die-off caused by oxygen depletion. This method of defaunation had not been used in the subtidal before. Community recovery was studied for 1 year and compared with community composition in undisturbed control plots. Macroinvertebrate samples were taken by diver-operated cores and washed through a 500 [mu]m mesh. Recovery was slow until after 70 days when abundance and number of species increased synchronously in disturbed and control plots. Multivariate analyses showed that community composition fluctuated strongly in the first 100 days. After 1 year, although disturbed and control communities were converging, differences in community composition were still significant. Time for complete recovery was estimated to be approximately 2 years. Predictions of current succession models were generally fulfilled in both studies. Recovered communities were similar in their composition to either pre-disturbance or surrounding communities. The major deviation from model predictions was that no abundance peak of opportunistic species occurred in either study. Timing of the disturbance, in both studies past the major macroinvertebrate recruitment peak, and the hydrodynamic regime were identified as major factors influencing recovery processes of the communities studied. Such deviation from model predictions indicates that the general models cannot take into account the multiplicity and complexity of factors influencing recovery processes. Thus, their applicability in predicting recovery times and endpoints for specific disturbances at specific locations is limited. Location-specific models might be a useful alternative. Recommendations are made to combine uni- and multivariate techniques to assess recovery processes due to their different sensibilities to changes in community composition.</p>


1997 ◽  
Vol 12 (10) ◽  
pp. 2809-2814 ◽  
Author(s):  
Fuqian Yang ◽  
J. C. M. Li

Impression recovery in which the deformation temperature is the same as recovery temperature is studied for the first time. PMMA is deformed by impression above the glass transition temperature to a depth of less than 0.3 mm and recovered at the same temperature. Almost complete recovery of dimension is observed every time. The dimensional changes obey second order kinetics and the temperature dependence of the rate constant shows two consecutive processes with activation energies 440 kJ/mole (between 104 and 113 °C) and 95 kJ/mole (between 113 and 140 °C). Two pairs of defects of opposite signs are believed to be involved in the dimensional recovery processes.


2020 ◽  
Vol 12 ◽  
pp. 205-213
Author(s):  
F Encina-Montoya ◽  
L Boyero ◽  
AM Tonin ◽  
M Fernanda Aguayo ◽  
C Esse ◽  
...  

In Chile, salt (NaCl) use per salmon fish farm ranges between 20-30 t yr-1 and is used to prevent and control fungal infections. An increase in salinity in freshwater can have adverse effects on freshwater biodiversity and ecosystem functions and services. We studied the effects of fish-farm effluents on benthic macroinvertebrate communities in a northern Patagonian stream (Chile). Benthic samples were collected at 3 sites near a land-based salmon aquaculture facility (one located 100 m upstream from the fish-farm outlet for effluent, 2 sites located 200 and 400 m downstream from the effluent source). We found changes in benthic macroinvertebrate communities downstream from the effluent, with higher abundances of tolerant taxa and lower abundances of sensitive taxa, which was related to nutrient and salt concentration in the water. We also studied the effects of salinity on macroinvertebrate drift in a mesocosm experiment conducted in recirculating channels, measuring the drift of 2 salt-sensitive macroinvertebrates (Andesiops peruvianus and Smicridea annulicornis), collected from an unpolluted northern Patagonian stream, after exposure to a range of salinity concentration pulses similar to those from fish farms. Our results demonstrate that (1) fish-farm effluent can alter stream macroinvertebrate community composition and dynamics, and (2) such effects are at least partly driven by high salt concentrations in effluent waters.


2008 ◽  
Vol 65 (5) ◽  
pp. 906-918 ◽  
Author(s):  
Jennifer Lento ◽  
Peter J Dillon ◽  
Keith M Somers ◽  
Ron A Reid

Few studies of biological recovery from acidification have dealt with community responses to changes in water chemistry, despite the importance of environmental tolerance and biological interactions that may only be visible by examining the community as a whole. In this study, we examined the ability of pH and several water chemistry covariables to explain temporal changes in the littoral benthic macroinvertebrate communities of lakes recovering from acidification. Data from 17 lakes sampled from 1988 to 2002 were summarized using correspondence analysis and compared using Procrustes analysis. Canonical correspondence analysis was used to examine the relationship between chemical variables and community structure. Benthic community composition changed over the sampling period, with significant year-to-year changes from 1993 to 1998. Community composition and water chemistry were highly correlated throughout the study period, although the strongest correlations were found from 1993 to 1997, coinciding with the period of greatest change in the benthic community. These results suggest that benthic macroinvertebrate communities in these lakes have changed in response to changes in water chemistry that are consistent with recovery from acidification.


1981 ◽  
Vol 16 (1) ◽  
pp. 45-58 ◽  
Author(s):  
G. Krantzberg ◽  
P.M. Stokes

Abstract An investigation was made of the effects exerted by benthic macroinvertebrate communities on copper speciation in sediments from a lake which is becoming acidified. In laboratory microcosms, benthic macroinvertebrate communities stimulated the flux of copper from sediment to water. The presence of the macro-benthos resulted in a redistribution of physico-chemical copper species within the sediment with a transfer from more strongly complexed forms (HC1 extractable) to adsorbed and cation exchangeable forms (MgCl2 extractable). The role of bio-turbation in copper transformations is discussed.


2002 ◽  
Vol 16 (2) ◽  
pp. 109-124 ◽  
Author(s):  
William E. Shafer ◽  
D. Jordan Lowe ◽  
Timothy J. Fogarty

The current trend toward corporate acquisitions of CPA firms poses potential threats to the autonomy and ethical standards of public accounting professionals. This recent consolidation movement suggests that for the first time a significant number of public accounting professionals are subject to the supervision and control of nonprofessionals. In addition to acknowledging the potential threats to auditor independence and objectivity, this paper suggests that these new organizational arrangements for the provision of public accounting services have other negative effects on professionalism and ethics such as desensitizing CPAs to traditional professional values, and subverting professional institutions to the goals of corporate employers. This paper develops a framework that identifies several specific research questions related to the effects of corporate ownership on professionalism and ethics in public accounting.


Sign in / Sign up

Export Citation Format

Share Document