scholarly journals Late Transition Metal Complexes of Pentafluorophenylphosphino-Pincer Ligands

2021 ◽  
Author(s):  
◽  
Bradley George Anderson

<p>This thesis details the synthesis of new examples of electron-poor pincer ligands, featuring bis(pentafluorophenyl)phosphine donors attached to 1,3-substituted phenylene or 2,6-substituted pyridine backbones, to create tridentate PCP and PNP ligands. The effect of the ligands’ electronic nature on the coordination chemistry and ease of pincer complex synthesis with late transition metals is discussed, as is the catalytic activity of the resultant palladium pincer complexes in the Heck and Suzuki reactions. Symmetric PCP and PNP ligands possessing bis(pentafluorophenyl)phosphinite and bis(pentafluorophenyl)phosphoramine functionalities were synthesised by reaction of bis(pentafluorophenyl)phosphine bromide with resorcinol, 3-hydroxybenzyl-di- tert -butylphosphine, 2,6-diaminopyridine, or 2,6-dihydroxypyridine, affording 1,3- [(C6F5)2PO]2C6H4 (POCOPH, 1), 1-[(C6F5)2PO]-3-(tBu2PCH2)2C6H4 (POCCPH, 3), 2,6-[(C6F5)2PNH]2C6H3N (PNNNP, 10), and 2,6-[(C6F5)2PO]2C6H3N (PONOP, 11) respectively. The previously reported 1,3-[(C6F5)2PCH2]2C6H4 (PCCCPH, 2) was also synthesised, with the literature yield improved upon by the use of magnesium-anthracene to generate the required Grignard reagent. The coordination chemistry of the POCOPH ligand 1 with platinum(0) alkene and platinum(II) dimethyl precursors revealed an affinity for the formation of cis-bridged oligomeric structures. The dimer [(POCOPH)Pt(nb)]2 (14, nb = norbornene) was isolated and crystallographically characterised from the reaction between 1 and [Pt(nb)3]. The solid state structure revealed the presence of stabilising - interactions between the aromatic ligand backbones, which were also observed in solution by 1H NMR spectroscopy. Reactions of ligand 1 with platinum and palladium dichloride or chloromethyl starting materials led to rare examples of cis,trans-dimers of the type cis,trans-[(POCOPH)MClX]2 (M = Pd, Pt; X = Cl, Me). In part due to facile dimer formation with 1, metallation of the ligand backbone to form the tridentate pincer complex [(POCOP)PtCl] (25) required long reaction times and high temperatures. It was observed that platinum dichloride starting materials with more strongly binding ancillary ligands were less prone to oligomer formation, and could facilitate more rapid metallation to from 25. More facile pincer complex formation was also observed for more electron-rich ligands with both PCP and PNP pincer ligands. The electron poor platinum and palladium POCOP, PCCCP, and POCCP pincer complexes (where the free ligand had been deprotonated upon metallation) were synthesised and subsequently converted into the metal carbonyl species [(PCP)M(CO)]+. Analysis of C−O stretching frequencies by infrared spectroscopy confirmed complexes of POCOP ligand 1 were the most electron poor, while those of POCCP ligand 3 were the most electron rich. Decarbonylation of the palladium pincer complexes was observed in solution and in the solid state, and was more facile for complexes with a higher wavenumber C−O stretch. Reaction of the [(PCP)PtCl] pincer complexes with methyl nucleophiles revealed that treatment with methylmagnesium iodide resulted in halide exchange, while methyllithium promoted nucleophilic attack at phosphorus. Spectroscopic data indicated that in one instance this led to pentafluorophenyl migration to the metal centre to form a [(PCP)Pt(C6F5)] complex. Dimethylzinc was successful in methylating the platinum PCP complexes; however, it was observed to degrade the palladium PCP pincer complexes. Treatment of the rhodium PNP pincer complex [(PNNNP)RhCl] (49) with dimethylzinc also resulted in degradation, which spectroscopic evidence indicated proceeded via ligand deprotonation and the formation of a zinc adduct of 49. Low temperature protonolysis of the [(PCP)PtMe] species did not reveal any information about possible interactions between the metal and liberated methane. The catalytic activity of the electron-poor [(PCP)PdCl] complexes were assessed in the Heck and Suzuki cross-coupling reactions. The complexes of 1, 2, and 3 were all found to possess only modest activity in the Heck reaction, functioning as precatalysts which decomposed to give catalytically-active Pd(0) colloids. Under milder Suzuki reaction conditions, the most electron-poor complex, [(POCOP)PdCl] (28) proved to be one of the most active pincer catalysts known for this reaction, able to achieve a turnover number of 176,000 for the coupling of electronically-deactivated aryl bromides and phenylboronic acid. Mercury poisoning tests revealed that Suzuki reactions catalysed by 28 proceeded via a homogeneous active species.</p>

2021 ◽  
Author(s):  
◽  
Bradley George Anderson

<p>This thesis details the synthesis of new examples of electron-poor pincer ligands, featuring bis(pentafluorophenyl)phosphine donors attached to 1,3-substituted phenylene or 2,6-substituted pyridine backbones, to create tridentate PCP and PNP ligands. The effect of the ligands’ electronic nature on the coordination chemistry and ease of pincer complex synthesis with late transition metals is discussed, as is the catalytic activity of the resultant palladium pincer complexes in the Heck and Suzuki reactions. Symmetric PCP and PNP ligands possessing bis(pentafluorophenyl)phosphinite and bis(pentafluorophenyl)phosphoramine functionalities were synthesised by reaction of bis(pentafluorophenyl)phosphine bromide with resorcinol, 3-hydroxybenzyl-di- tert -butylphosphine, 2,6-diaminopyridine, or 2,6-dihydroxypyridine, affording 1,3- [(C6F5)2PO]2C6H4 (POCOPH, 1), 1-[(C6F5)2PO]-3-(tBu2PCH2)2C6H4 (POCCPH, 3), 2,6-[(C6F5)2PNH]2C6H3N (PNNNP, 10), and 2,6-[(C6F5)2PO]2C6H3N (PONOP, 11) respectively. The previously reported 1,3-[(C6F5)2PCH2]2C6H4 (PCCCPH, 2) was also synthesised, with the literature yield improved upon by the use of magnesium-anthracene to generate the required Grignard reagent. The coordination chemistry of the POCOPH ligand 1 with platinum(0) alkene and platinum(II) dimethyl precursors revealed an affinity for the formation of cis-bridged oligomeric structures. The dimer [(POCOPH)Pt(nb)]2 (14, nb = norbornene) was isolated and crystallographically characterised from the reaction between 1 and [Pt(nb)3]. The solid state structure revealed the presence of stabilising - interactions between the aromatic ligand backbones, which were also observed in solution by 1H NMR spectroscopy. Reactions of ligand 1 with platinum and palladium dichloride or chloromethyl starting materials led to rare examples of cis,trans-dimers of the type cis,trans-[(POCOPH)MClX]2 (M = Pd, Pt; X = Cl, Me). In part due to facile dimer formation with 1, metallation of the ligand backbone to form the tridentate pincer complex [(POCOP)PtCl] (25) required long reaction times and high temperatures. It was observed that platinum dichloride starting materials with more strongly binding ancillary ligands were less prone to oligomer formation, and could facilitate more rapid metallation to from 25. More facile pincer complex formation was also observed for more electron-rich ligands with both PCP and PNP pincer ligands. The electron poor platinum and palladium POCOP, PCCCP, and POCCP pincer complexes (where the free ligand had been deprotonated upon metallation) were synthesised and subsequently converted into the metal carbonyl species [(PCP)M(CO)]+. Analysis of C−O stretching frequencies by infrared spectroscopy confirmed complexes of POCOP ligand 1 were the most electron poor, while those of POCCP ligand 3 were the most electron rich. Decarbonylation of the palladium pincer complexes was observed in solution and in the solid state, and was more facile for complexes with a higher wavenumber C−O stretch. Reaction of the [(PCP)PtCl] pincer complexes with methyl nucleophiles revealed that treatment with methylmagnesium iodide resulted in halide exchange, while methyllithium promoted nucleophilic attack at phosphorus. Spectroscopic data indicated that in one instance this led to pentafluorophenyl migration to the metal centre to form a [(PCP)Pt(C6F5)] complex. Dimethylzinc was successful in methylating the platinum PCP complexes; however, it was observed to degrade the palladium PCP pincer complexes. Treatment of the rhodium PNP pincer complex [(PNNNP)RhCl] (49) with dimethylzinc also resulted in degradation, which spectroscopic evidence indicated proceeded via ligand deprotonation and the formation of a zinc adduct of 49. Low temperature protonolysis of the [(PCP)PtMe] species did not reveal any information about possible interactions between the metal and liberated methane. The catalytic activity of the electron-poor [(PCP)PdCl] complexes were assessed in the Heck and Suzuki cross-coupling reactions. The complexes of 1, 2, and 3 were all found to possess only modest activity in the Heck reaction, functioning as precatalysts which decomposed to give catalytically-active Pd(0) colloids. Under milder Suzuki reaction conditions, the most electron-poor complex, [(POCOP)PdCl] (28) proved to be one of the most active pincer catalysts known for this reaction, able to achieve a turnover number of 176,000 for the coupling of electronically-deactivated aryl bromides and phenylboronic acid. Mercury poisoning tests revealed that Suzuki reactions catalysed by 28 proceeded via a homogeneous active species.</p>


2020 ◽  
Author(s):  
Dmitry Lebedev ◽  
Roman Ezhov Ezhov ◽  
Javier Heras-Domingo ◽  
Aleix Comas Vives ◽  
Nicolas Kaeffer ◽  
...  

Heterogeneous catalysts in the form of atomically dispersed metals on a support provide the most efficient utilization of the active component, which is especially important for scarce and expensive late transition metals. These catalysts also enable unique opportunities to understand reaction pathways through detailed spectroscopic and computational studies. Here we demonstrate that atomically dispersed iridium sites on indium tin oxide prepared via surface organometallic chemistry display exemplary catalytic activity in one of the most challenging electrochemical processes, oxygen evolution reaction (OER). In situ X-ray absorption studies revealed the formation of IrV=O intermediate under OER conditions with an Ir–O distance of 1.83 Å. Modelling of the reaction mechanism indicates that Ir(V)=O is likely a catalyst resting state, which is subsequently oxidized to Ir(VI) enabling fast water nucleophilic attack and oxygen evolution. We anticipate that the applied strategy can be instrumental in preparing and studying a broad range of atomically dispersed transition metal catalysts on conductive oxides for (photo)electrochemical applications.


2015 ◽  
Vol 87 (2) ◽  
pp. 195-204 ◽  
Author(s):  
K. Yuvaraj ◽  
Dipak Kumar Roy ◽  
C. Arivazhagan ◽  
Bijnaneswar Mondal ◽  
Sundargopal Ghosh

AbstractThermolysis of an in situ generated intermediate [(Cp*Ta)2(BH3)2Cl2], 1 generated from the reaction of [Cp*TaCl4], (Cp* = η5-C5Me5) and [LiBH4·thf], in presence of [Ru3(CO)12] yielded pileo-[Cp*TaCl(μ-Cl)-B2H4Ru3(CO)8], 2 having two electrons fewer than seven pairs required for the observed square pyramidal geometry. Cluster 2 is the first example of an unsaturated cluster comprising early and late transition metals in a square pyramid core. This reaction also yielded [(Cp*Ta)2(B2H6)(B2H4Cl2)], 3 as a by-product. In addition, the reaction of [Cp*MoCl4] (Cp* = η5-C5Me5) with [LiBH4.thf] in presence of excess [MeI] at mild condition led to the isolation of periodinated dimolybdatetraborane [(Cp*Mo)2B4H3I5], 4 that hints a possible existence of [(Cp*Mo)2B4H8]. After the isolation of periodinated 4, we extended this chemistry towards the late transition metallaborane [(Cp*Rh)3B4H4], 5 using [PtBr2] as brominating source. Although all the attempts to isolate perbrominated rhodaborane failed, we have isolated partially brominated rhodaborane clusters [(Cp*Rh)3(BH)-(BBr)3], 6 and [(Cp*Rh)3(BH)3(BBr)], 7. All the compounds were characterized by IR and 1H, 11B and 13C NMR spectroscopy in solution, and the solid-state structures of 2, 4 and 6 were established by crystallographic analysis.


2021 ◽  
Author(s):  
◽  
Melanie Ruth Maria Nelson

<p>This thesis provides an account of research into a group of diphosphine ligands with a rigid xanthene backbone and tert -butyl substituents on the phosphorus atoms. The three ligands have different groups in the bridgehead position of the backbone (CMe₂, SiMe₂, or S) which change the natural (calculated) bite-angle of the ligand. The coordination chemistry of these t -Bu-xantphos ligands with late-transition metals has been investigated with a focus on metal complexes that may form in catalytic reactions.  The three t -Bu-xantphos ligands were synthesised by lithiation of the backbone using sec -butyllithium/TMEDA and treatment with PtBu₂Cl. The natural biteangles of the Ph-xantphos (111.89–114.18°) and t -Bu-xantphos (126.80–127.56°) ligands were calculated using DFT. The bite-angle of the t -Bu-xantphos ligands is larger due to the increased steric bulk of the tert -butyl substituents. The electronic properties of the t -Bu-xantphos ligandswere also investigated by synthesis of their phosphine selenides. The values of ¹J PSe (689.1–698.5Hz) indicate that the t -Bu-xantphos ligands have a higher basicity than Ph-xantphos between PPh₂Me and PMe₃.  The silver complexes, [Ag(t -Bu-xantphos)Cl] and [Ag(t -Bu-xantphos)]BF₄ were synthesised with the t -Bu-xantphos ligands. In contrast to systems with phenyl phosphines, all species were monomeric. [Rh(t -Bu-xantphos)Cl] complexes were synthesised, which reacted with H₂, forming [Rh(t -Bu-xantphos-ĸP,O,P ’)Cl(H)₂] complexes, and with CO, forming [Rh(t -Bu-xantphos)(CO)₂Cl] complexes. The [Rh(t -Bu-xantphos)Cl] species are air-sensitive readily forming [Rh(t -Bu-xantphos)Cl(ƞ²-O₂)] complexes. The crystal structure of [Rh(t -Bu-xantphos)Cl(ƞ²-O₂)], contained 15% of the dioxygen sites replaced with an oxo ligand. This is the first crystallographic evidence of a rhodium(III) oxo complex, and only the third rhodium oxo species reported.  The coordination chemistry of the ligands with platinum(0) and palladium(0) showed some differences. [Pt(t -Bu-xantphos)(C₂H₄)] complexes were synthesised for all three ligands. However, reaction with [Pt(nb)₃] produced a mixture of [Pt(t -Bu-xantphos)] and [Pt(t -Bu-xantphos)(nb)] for t -Bu-sixantphos and t -Buthixantphos. Although few examples of isolable [Pt(PP)] complexes with diphosphines have been reported [Pt(t -Bu-thixantphos)] was isolated by removal of the norbornene. t -Bu-Xantphos formed small amounts of [Pt(t -Bu-xantphos)] initially, which progressed to [Pt(t -Bu-xantphos)H]X. The analogous reactions with [Pd(nb)₃] gave [Pd(t -Bu-xantphos)] and [Pd(t -Bu-xantphos)(nb)] complexes in all cases. [Pt(t -Bu-thixantphos)(C₂H₄)] and [M(t -Bu-thixantphos)] (M = Pd, Pt) react with oxygen forming [Pt(t -Bu-thixantphos)(ƞ²-O₂)], which reacts with CO to give [Pt(t -Bu-thixantphos-H-ĸ-C,P,P ’)OH] through a series of intermediates.  [M(t -Bu-xantphos)Cl₂] (M = Pd, Pt) complexes were synthesised, showing exclusive trans coordination of the diphosphine ligands. The X-ray crystal structure of [Pt(t -Bu-thixantphos)Cl₂] has a bite-angle of 151.722(15)°. This is the first [PtCl₂(PP)] complex with a bite-angle between 114 and 171°. In polar solvents a chloride ligand dissociates from the [Pt(t -Bu-xantphos)Cl₂] complexes producing [Pt(t -Bu-xantphos-ĸP,O,P ’)Cl]⁺. The analogous [Pd(t -Bu-xantphos-ĸP,O,P ’)Cl]⁺ complexes were formed by reaction of the dichlorides complexes with NH₄PF₆. The [Pt(t -Bu-xantphos-ĸP,O,P ’)Me]⁺ pincer complexes were the only product from reaction with [Pt(C₆H₁₀)ClMe], with the stronger trans influence of the methyl ligand promoting loss of the chloride. The formation of the pincer complexes was further explored using DFT.  The values of J PtC for the methyl carbons in the [Pt(t -Bu-xantphos-ĸP,O,P ’)Me]⁺ complexes, and J RhH for the hydride trans to the oxygen atom in the [Rh(t -Buxantphos-ĸP,O,P ’)Cl(H)₂] complexes were largest for t -Bu-sixantphos, then t -Buthixantphos, then t -Bu-xantphos. The trans influence of the t -Bu-xantphos oxygen donor follows the trend t -Bu-sixantphos < t -Bu-thixantphos < t -Bu-xantphos.</p>


2021 ◽  
Author(s):  
◽  
Melanie Ruth Maria Nelson

<p>This thesis provides an account of research into a group of diphosphine ligands with a rigid xanthene backbone and tert -butyl substituents on the phosphorus atoms. The three ligands have different groups in the bridgehead position of the backbone (CMe₂, SiMe₂, or S) which change the natural (calculated) bite-angle of the ligand. The coordination chemistry of these t -Bu-xantphos ligands with late-transition metals has been investigated with a focus on metal complexes that may form in catalytic reactions.  The three t -Bu-xantphos ligands were synthesised by lithiation of the backbone using sec -butyllithium/TMEDA and treatment with PtBu₂Cl. The natural biteangles of the Ph-xantphos (111.89–114.18°) and t -Bu-xantphos (126.80–127.56°) ligands were calculated using DFT. The bite-angle of the t -Bu-xantphos ligands is larger due to the increased steric bulk of the tert -butyl substituents. The electronic properties of the t -Bu-xantphos ligandswere also investigated by synthesis of their phosphine selenides. The values of ¹J PSe (689.1–698.5Hz) indicate that the t -Bu-xantphos ligands have a higher basicity than Ph-xantphos between PPh₂Me and PMe₃.  The silver complexes, [Ag(t -Bu-xantphos)Cl] and [Ag(t -Bu-xantphos)]BF₄ were synthesised with the t -Bu-xantphos ligands. In contrast to systems with phenyl phosphines, all species were monomeric. [Rh(t -Bu-xantphos)Cl] complexes were synthesised, which reacted with H₂, forming [Rh(t -Bu-xantphos-ĸP,O,P ’)Cl(H)₂] complexes, and with CO, forming [Rh(t -Bu-xantphos)(CO)₂Cl] complexes. The [Rh(t -Bu-xantphos)Cl] species are air-sensitive readily forming [Rh(t -Bu-xantphos)Cl(ƞ²-O₂)] complexes. The crystal structure of [Rh(t -Bu-xantphos)Cl(ƞ²-O₂)], contained 15% of the dioxygen sites replaced with an oxo ligand. This is the first crystallographic evidence of a rhodium(III) oxo complex, and only the third rhodium oxo species reported.  The coordination chemistry of the ligands with platinum(0) and palladium(0) showed some differences. [Pt(t -Bu-xantphos)(C₂H₄)] complexes were synthesised for all three ligands. However, reaction with [Pt(nb)₃] produced a mixture of [Pt(t -Bu-xantphos)] and [Pt(t -Bu-xantphos)(nb)] for t -Bu-sixantphos and t -Buthixantphos. Although few examples of isolable [Pt(PP)] complexes with diphosphines have been reported [Pt(t -Bu-thixantphos)] was isolated by removal of the norbornene. t -Bu-Xantphos formed small amounts of [Pt(t -Bu-xantphos)] initially, which progressed to [Pt(t -Bu-xantphos)H]X. The analogous reactions with [Pd(nb)₃] gave [Pd(t -Bu-xantphos)] and [Pd(t -Bu-xantphos)(nb)] complexes in all cases. [Pt(t -Bu-thixantphos)(C₂H₄)] and [M(t -Bu-thixantphos)] (M = Pd, Pt) react with oxygen forming [Pt(t -Bu-thixantphos)(ƞ²-O₂)], which reacts with CO to give [Pt(t -Bu-thixantphos-H-ĸ-C,P,P ’)OH] through a series of intermediates.  [M(t -Bu-xantphos)Cl₂] (M = Pd, Pt) complexes were synthesised, showing exclusive trans coordination of the diphosphine ligands. The X-ray crystal structure of [Pt(t -Bu-thixantphos)Cl₂] has a bite-angle of 151.722(15)°. This is the first [PtCl₂(PP)] complex with a bite-angle between 114 and 171°. In polar solvents a chloride ligand dissociates from the [Pt(t -Bu-xantphos)Cl₂] complexes producing [Pt(t -Bu-xantphos-ĸP,O,P ’)Cl]⁺. The analogous [Pd(t -Bu-xantphos-ĸP,O,P ’)Cl]⁺ complexes were formed by reaction of the dichlorides complexes with NH₄PF₆. The [Pt(t -Bu-xantphos-ĸP,O,P ’)Me]⁺ pincer complexes were the only product from reaction with [Pt(C₆H₁₀)ClMe], with the stronger trans influence of the methyl ligand promoting loss of the chloride. The formation of the pincer complexes was further explored using DFT.  The values of J PtC for the methyl carbons in the [Pt(t -Bu-xantphos-ĸP,O,P ’)Me]⁺ complexes, and J RhH for the hydride trans to the oxygen atom in the [Rh(t -Buxantphos-ĸP,O,P ’)Cl(H)₂] complexes were largest for t -Bu-sixantphos, then t -Buthixantphos, then t -Bu-xantphos. The trans influence of the t -Bu-xantphos oxygen donor follows the trend t -Bu-sixantphos < t -Bu-thixantphos < t -Bu-xantphos.</p>


2021 ◽  
Author(s):  
Khrystyna Herasymchuk

Pincer ligands are monoanionic, tridentate binding molecules that have been used in coordination chemistry as efficient homogeneous and heterogeneous catalysts (i.e. as transition metal complexes). The focus of this work lies in the synthesis, characterization and coordination chemistry of a series of novel asymmetric potentially monoanionic NN'N", NN'C and NN'P type pincer ligands with amide functionality derived from the skeleton of 2-(2'-anilinyl)-4,4-dimethyl-2-oxazoline. Modular approach to this synthesis has been developed through an alkyl halide intermediate, in addition to the substrate-dependent alternative pincer syntheses, which are also described. The coordination chemistries of Pd and Ni, as well as the potential application of these pincer complexes in metal mediated catalysis of aldehyde allylation reactions will be explored. Moreover, a number of Pd(II) pincer complexes have been successfully synthesized and structurally characterized and these results are likewise described.


2019 ◽  
Vol 48 (43) ◽  
pp. 16322-16329 ◽  
Author(s):  
Sandeep Kaur-Ghumaan ◽  
Patrick Hasche ◽  
Anke Spannenberg ◽  
Torsten Beweries

The catalytic activity of a series of nickel complexes with different phosphinite/thiophosphinite ligands for electrocatalytic proton reduction strongly depends on the nature of the pincer ligands.


2021 ◽  
Author(s):  
Khrystyna Herasymchuk

Pincer ligands are monoanionic, tridentate binding molecules that have been used in coordination chemistry as efficient homogeneous and heterogeneous catalysts (i.e. as transition metal complexes). The focus of this work lies in the synthesis, characterization and coordination chemistry of a series of novel asymmetric potentially monoanionic NN'N", NN'C and NN'P type pincer ligands with amide functionality derived from the skeleton of 2-(2'-anilinyl)-4,4-dimethyl-2-oxazoline. Modular approach to this synthesis has been developed through an alkyl halide intermediate, in addition to the substrate-dependent alternative pincer syntheses, which are also described. The coordination chemistries of Pd and Ni, as well as the potential application of these pincer complexes in metal mediated catalysis of aldehyde allylation reactions will be explored. Moreover, a number of Pd(II) pincer complexes have been successfully synthesized and structurally characterized and these results are likewise described.


Sign in / Sign up

Export Citation Format

Share Document