scholarly journals Paleo-environmental reconstruction of a Late Quaternary organic-rich section preserved near Ohakune, central North Island, New Zealand

2021 ◽  
Author(s):  
◽  
Hannah Juchnowicz

<p>A 6m thick section of organic-rich sediment, exposed at Karioi, near Ohakune, central North Island (672m above sea level), presents an opportunity to form a detailed palynological record of Late Quaternary vegetation and climate change. The organic-rich sequence at Karioi lies beneath a 3.29m thick cover-bed sequence that contains towards its base the c. 25.4 ka cal BP Kawakawa/Oruanui Tephra, a key chronostratigraphic marker for the Last Glacial Maximum (LGM) throughout New Zealand. A previous palynological investigation of the underlying organic sediments suggested they extended back from the LGM (Marine isotope stage 2) to the previous interglacial (MIS 5). Such apparently continuous terrestrial records spanning this age range and located at this altitude are rare. A key feature of the Karioi organic sequence is the occurrence of numerous millimetre- to decimetre- thick tephra, derived from a variety of North Island eruptive sources. The possibility that volcanic processes have influenced vegetation change makes climate inferences at this important site potentially problematic. In this new study of the Karioi section, centimetre-scale palynological and diatom sampling conducted above and below three selected tephra (here named ‘Big Lower Lapilli’, ’Unknown’ tephra, and ‘Little’ tephra) at Karioi, were used to assess the influence of these volcanic events on the vegetation and local hydrology. Loss-on-ignition and magnetic susceptibility were used, alongside pollen and diatom analysis, to infer changes in local hydrology and depositional processes in relation to environmental stability. Together, these analyses helped determine the volcanic impacts on vegetation assemblages gained from the pollen record at the site and allowed these to be disassociated from larger scale climate influences of interest. The results of this study indicate a discernible volcanic impact on vegetation and hydrology following just one of the three volcanic events targeted in the record. High-resolution (0.5cm) pollen analysis above and below the largest of the three tephra layers, the 22cm thick ‘Big Lower Lapilli’ showed a notable change in vegetation assemblage immediately following tephra deposition. The most significant of these changes was the marked increase in herbs. This was an unexpected result thought to be due to the proximity of the site to sub-alpine and alpine herbaceous communities, which in turn were closer to the source of volcanism than other vegetation communities depicted in the pollen record. The changes to the pollen spectra are estimated to have taken 300 years to return to pre-eruption assemblages. Magnetic susceptibility and loss-on-ignition results further add to this research by indicating the comparative stability of the depositional environment around the time of deposition of the ‘Big Lower Lapilli’. Statistical analysis further identified a change in vegetation communities associated with tephra deposition, coinciding with an increase in diatom species abundance, which signified an increase in water volume and depth at the site. This was most clearly seen by the marked increase in Aulacoseira ambigua, which is almost exclusively found in water bodies of at least 2 metres depth. These results have major implications for pollen-based climate reconstructions from sequences with interbedded tephra layers. First, such investigations should include fine resolution analyses around prominent tephra layers to test for possible volcanic disturbance that may be a confounding factor in any paleoclimatic reconstructions applied. In this study, for example, vegetation assemblages may have taken up to 300 years to return to pre-eruption levels, but this recovery phase was well within the c. 1000 year inter-sample period of the original coarse (10cm) resolution record. Without the fine resolution study conducted here, the decline of shrubs and increase in grasses, with no obvious changes to trees following deposition of the ‘Big Lower Lapilli’ could have been inferred as a short-term cooling interval. Beyond this restricted zone of volcanic disturbance, greater confidence in the paleoclimatic interpretation of the Karioi pollen record has been achieved as a result of this finer resolution ‘test’ for volcanic disturbance. Second, the volcanic disturbance indicated following the ‘big lower lapilli’ has shed light on pollen taphonomic sources and pathways at this site and in turn, on spatial patterns of vegetation communities. In this case, the increase in tree pollen relative to non-arboreal pollen is interpreted as originating from more distant forest stands that have been comparatively less affected by the deposition of tephra than locally growing vegetation.</p>

2021 ◽  
Author(s):  
◽  
Hannah Juchnowicz

<p>A 6m thick section of organic-rich sediment, exposed at Karioi, near Ohakune, central North Island (672m above sea level), presents an opportunity to form a detailed palynological record of Late Quaternary vegetation and climate change. The organic-rich sequence at Karioi lies beneath a 3.29m thick cover-bed sequence that contains towards its base the c. 25.4 ka cal BP Kawakawa/Oruanui Tephra, a key chronostratigraphic marker for the Last Glacial Maximum (LGM) throughout New Zealand. A previous palynological investigation of the underlying organic sediments suggested they extended back from the LGM (Marine isotope stage 2) to the previous interglacial (MIS 5). Such apparently continuous terrestrial records spanning this age range and located at this altitude are rare. A key feature of the Karioi organic sequence is the occurrence of numerous millimetre- to decimetre- thick tephra, derived from a variety of North Island eruptive sources. The possibility that volcanic processes have influenced vegetation change makes climate inferences at this important site potentially problematic. In this new study of the Karioi section, centimetre-scale palynological and diatom sampling conducted above and below three selected tephra (here named ‘Big Lower Lapilli’, ’Unknown’ tephra, and ‘Little’ tephra) at Karioi, were used to assess the influence of these volcanic events on the vegetation and local hydrology. Loss-on-ignition and magnetic susceptibility were used, alongside pollen and diatom analysis, to infer changes in local hydrology and depositional processes in relation to environmental stability. Together, these analyses helped determine the volcanic impacts on vegetation assemblages gained from the pollen record at the site and allowed these to be disassociated from larger scale climate influences of interest. The results of this study indicate a discernible volcanic impact on vegetation and hydrology following just one of the three volcanic events targeted in the record. High-resolution (0.5cm) pollen analysis above and below the largest of the three tephra layers, the 22cm thick ‘Big Lower Lapilli’ showed a notable change in vegetation assemblage immediately following tephra deposition. The most significant of these changes was the marked increase in herbs. This was an unexpected result thought to be due to the proximity of the site to sub-alpine and alpine herbaceous communities, which in turn were closer to the source of volcanism than other vegetation communities depicted in the pollen record. The changes to the pollen spectra are estimated to have taken 300 years to return to pre-eruption assemblages. Magnetic susceptibility and loss-on-ignition results further add to this research by indicating the comparative stability of the depositional environment around the time of deposition of the ‘Big Lower Lapilli’. Statistical analysis further identified a change in vegetation communities associated with tephra deposition, coinciding with an increase in diatom species abundance, which signified an increase in water volume and depth at the site. This was most clearly seen by the marked increase in Aulacoseira ambigua, which is almost exclusively found in water bodies of at least 2 metres depth. These results have major implications for pollen-based climate reconstructions from sequences with interbedded tephra layers. First, such investigations should include fine resolution analyses around prominent tephra layers to test for possible volcanic disturbance that may be a confounding factor in any paleoclimatic reconstructions applied. In this study, for example, vegetation assemblages may have taken up to 300 years to return to pre-eruption levels, but this recovery phase was well within the c. 1000 year inter-sample period of the original coarse (10cm) resolution record. Without the fine resolution study conducted here, the decline of shrubs and increase in grasses, with no obvious changes to trees following deposition of the ‘Big Lower Lapilli’ could have been inferred as a short-term cooling interval. Beyond this restricted zone of volcanic disturbance, greater confidence in the paleoclimatic interpretation of the Karioi pollen record has been achieved as a result of this finer resolution ‘test’ for volcanic disturbance. Second, the volcanic disturbance indicated following the ‘big lower lapilli’ has shed light on pollen taphonomic sources and pathways at this site and in turn, on spatial patterns of vegetation communities. In this case, the increase in tree pollen relative to non-arboreal pollen is interpreted as originating from more distant forest stands that have been comparatively less affected by the deposition of tephra than locally growing vegetation.</p>


1993 ◽  
Vol 40 (3) ◽  
pp. 332-342 ◽  
Author(s):  
Maria Socorro Lozano-Garcı́a ◽  
Beatriz Ortega-Guerrero ◽  
Margarita Caballero-Miranda ◽  
Jaime Urrutia-Fucugauchi

AbstractIn order to establish paleoenvironmental conditions during the late Quaternary, four cores from the Basin of Mexico (central Mexico) were drilled in Chalco Lake, located in the southeastern part of the basin. The upper 8 m of two parallel cores were studied, using paleomagnetic, loss-on-ignition, pollen, and diatom analyses. Based on 11 14C ages, the analyzed record spans the last 19,000 14C yr B.P. Volcanic activity has affected microfossil abundances, both directly and indirectly, resulting in absence or reduction of pollen and diatom assemblages. Important volcanic activity took place between 19,000 and 15,000 yr B.P. when the lake was a shallow alkaline marsh and an increase of grassland pollen suggests a dry, cold climate. During this interval, abrupt environmental changes with increasing moisture occurred. From 15,000 until 12,500 yr B.P. the lake level increased and the pollen indicates wetter conditions. The highest lake level is registered from 12,500 to ca. 9000 yr B.P. The end of the Pleistocene is characterized by an increase in humidity. From 9000 until ca. 3000 yr B.P. Chalco Lake was a saline marsh and the pollen record indicates warmer conditions. After 3000 yr B.P. the lake level increased and human disturbance dominates the lacustrine record.


1980 ◽  
Vol 13 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Alan N. Federman ◽  
Steven N. Carey

AbstractFive widespread tephra layers are found in late Quaternary sediments (0–130,000 yr B.P.) of the Eastern Mediterranean Sea. These layers have been correlated among abyssal cores and to their respective terrestrial sources by electron-probe microanalysis of glass and pumice shards. Major element variations are sufficient to discriminate unambiguously between the five major layers. Oxygen isotope stratigraphy in one of the cores studied was used to data four of the five layers. Two of the widespread layers are derived from explosive eruptions of the Santorini volcanic complex: the Minoan Ash (3370 yr B.P.) and the Acrotiri Ignimbrite (18,000 yr B.P.). An additional layer, found in one core only, is most likely correlated to the Middle Pumice Series of Santorini (approximately 100,000 yr B.P.). Two layers are correlated to deposits on the islands of Yali and Kos and date to 31,000 and 120,000 yr B.P., respectively. One layer originated from the Neapolitan area of Italy 38,000 yr B.P.


1990 ◽  
Vol 68 (6) ◽  
pp. 1320-1326 ◽  
Author(s):  
Calvin J. Heusser

Late Quaternary vegetational history of the Aleutian Islands is interpreted from fossil pollen and spore stratigraphy and radiocarbon chronology of sections of mires on the islands of Attu, Adak, Atka, and Umnak. Mires postdate the withdrawal of ice-age glaciers between approximately 12 000 and 10 000 years ago with the exception of the mire on Attu Island, where deglaciation apparently began as late as 7000 years ago. No uniform pattern of change in Pacific coastal tundra communities is evident in the fossil assemblages. Pollen assemblages, consisting variably of Gramineae, Cyperaceae, Empetrum, Umbelliferae, Salix, Ranunculaceae, Compositae, Polypodiaceae, and Lycopodium, reflect conditions in effect in different sectors of the Aleutian chain. Climate, soil, topography, volcanism, and seismic activity are noteworthy parameters influencing vegetation composition and distribution. Volcanism has been of major importance, as shown by thickness, distribution, and frequency of tephra layers that number 5 on Attu, 24 on Adak, 17 on Atka, and 5 on Umnak. A repeated condition of patch dynamics, created in the main by recurrent volcanic eruptions with widespread accompanying ashfalls, has apparently overprinted the effects of climatic change. Key words: Aleutian Islands, Quaternary, vegetation, fossil pollen, volcanism.


1988 ◽  
Vol 10 ◽  
pp. 102-108 ◽  
Author(s):  
C.C. Langway ◽  
H.B. Clausen ◽  
C.U. Hammer

A strong volcanic-acid signal is clearly registered, using an acidity-measuring technique, in the A.D. 1259 ice layer in four different Greenland ice cores (Camp Century, Milcent, Crête and Dye 3). This signal is similar in amplitude to the Laki (Iceland) A.D. 1783 volcanic event as recorded in the central and south Greenland ice cores. Measurement of ice layers from corresponding age levels in Antarctic ice cores (Byrd Station, South Pole and J–9 on the Ross Ice Shelf) provides similar strong acid signals. There is no historical record of a significant volcanic eruption for the period around A.D. 1260 in the Northern Hemisphere. Subsequent chemical analyses of all A.D. 1259 ice layers show similar compositions. We suggest that the A.D. 1259 signals registered in both Greenland and Antarctica were caused by the same volcanic disturbance and that its epicenter was located at the Earth’s equatorial zone, which enabled global distribution of the acid gases. These results indicate that inter-hemispheric dating of ice sheets is possible by the chemical identification of major eruptive volcanic events in the equatorial zone.


1992 ◽  
Vol 37 (3) ◽  
pp. 281-303 ◽  
Author(s):  
Alan J. Busacca ◽  
Kevin T. Nelstead ◽  
Eric V. McDonald ◽  
Michael D. Purser

AbstractThirty-two distal tephra layers that are interbedded in Quaternary loess at 13 sites in the Channeled Scabland and Palouse were sampled as part of a regional study of the stratigraphy and chronology of dominantly windblown sediments on the Columbia Plateau. An electron microprobe was used to determine the elemental composition of volcanic glass in all of the samples and also to determine the composition of ilmenite in 14 of them. Two of the distal tephra layers correlate with Glacier Peak eruptions (11,200 yr B.P.), five with Mount St. Helens tephra set S (13,000 yr B.P.), and nine with Mount St. Helens tephra set C (ca. 36,000 yr B.P.) based on analysis of glass and ilmenite in reference pumices from Glacier Peak, Mount St. Helens, Mount Mazama, Mount Rainier, and Mount Jefferson, on the calculation of similarity coefficients for comparisons of both glass and ilmenite reference compositions with those of distal tephras, and on considerations of stratigraphic position. The composition of glass and ilmenite and the stratigraphic position of one distal tephra layer in the loess suggests that it is from an eruption of Mount St. Helens at least several thousand years older than the set C eruptions. Glass composition and stratigraphic position of a distal tephra at another site in loess suggested a possible correlation with some layers of the Pumice Castle eruptive sequence at Mount Mazama (ca. 70,000 yr B.P.), but similarity coefficients on ilmenite of only 45 and 48 fail to support the correlation and show why multiple correlation methods should be used. Similarity coefficients higher than 96 for both glass and ilmenite establish a correlation with Mount St. Helens layer Cw for distal layers in two widely separated sites. These layers are in sedimentary successions that are closely associated with giant floods in the Channeled Scabland. The 36,000 yr B.P. radiocarbon age of the Mount St. Helens set C establishes a minimum limiting date for an episode of flooding that predates the widespread late Wisconsin floods. A correlation of distal tephra layers at two other sites in the Scabland and Palouse establishes a chronostratigraphic link to a still-older episode of flooding within the Brunhes Normal Polarity Chron. Six distal tephra layers in pre-late Quaternary loess that are not correlated with known or dated eruptions have compositions and distinctive stratigraphic positions relative to magnetic reversal boundaries that make them key markers for future work.


1985 ◽  
Vol 23 (1) ◽  
pp. 38-53 ◽  
Author(s):  
Jonathan O. Davis

Near Summer Lake in southern Oregon, 54 tephra beds of late Quaternary age are exposed in pluvial lake sediments of Lake Chewaucan. Seven of the tephra beds near the top can be correlated with tephra deposits younger than 117,000 yr at Mount St. Helens, Washington, at Crater Lake, Oregon, and in northwestern Nevada in the deposits of pluvial Lake Lahontan. However, most of the section at Summer Lake lies below the correlated units, and contains 39 tephra beds older than 117,000 yr.Major-element chemistry of tephra glasses was determined by electron microprobe analysis; petrography supports the correlations made from chemical evidence. Compositions correlated range from 70 to 76% SiO2; the least silicic Summer Lake glass contained 57%.Extrapolation of depositional rate suggests that most of the sediments at Summer Lake are younger than about 335,000 yr, but older lake beds containing tephra layers occur at one place. The long lacustrine record suggests that Lake Chewaucan persisted through the last interpluvial stage, and that the lake may have dried up at the end of the Pleistocene due to diversion of the Chewaucan River by relict shore features.


Radiocarbon ◽  
2015 ◽  
Vol 57 (5) ◽  
pp. 737-753 ◽  
Author(s):  
Walter Mareschi Bissa ◽  
Mauro B de Toledo

This article presents a palynological study carried out on a sediment core from a peat deposit in Serra de Botucatu, in SÃo Paulo State, southeastern Brazilian Plateau. This region has been covered by grassland vegetation and forest patches throughout the recorded period. AMS radiocarbon dating plus palynological analysis of 27 samples from the sediment core allowed the recognition of several environmental changes that took place during the last 33,000 yr recorded in the core. The relationship between sedimentation rates and changes in the abundance of plants recognized through their pollen record, particularly a few important indicator species, provided the paleoenvironmental history for the Serra de Botucatu region, allowing the identification of changes in climate conditions and comparison with other regions in Brazil. One of the most remarkable features of this record is the cold and humid conditions during the Last Glacial Maximum, which diverges from previous interpretations for southeastern and southern Brazil but is in good agreement with paleoclimatic data from trace elements from cave stalagmites in SE Brazil. No indications of human impacts on the vegetation were found in this record.


1990 ◽  
Vol 33 (2) ◽  
pp. 204-218 ◽  
Author(s):  
Gordon B. Bonan ◽  
Bruce P. Hayden

AbstractFull-glacial pollen records from southeastern United States are composed primarily of pine and spruce, with lesser amounts of fir, birch, and oak. A simulation model of forest dynamics was used to reconstruct the composition and structure of these forests on the Delmarva Peninsula of Virginia, where pollen data were available to test the model, and climate and soils data were available to drive the model. Reconstructed annual precipitation and summer air temperature were consistent with modern analog estimates from the pollen record. Annual precipitation was also consistent with climates simulated by atmospheric general circulation models, but summers were colder. Correcting these simulated climates for possible errors resulted in summer air temperature consistent with our estimate. However, two alternative parameter sets relating simulated tree growth to air temperature sums precluded robust forest reconstructions. With one parameter set, the species dominating the simulated forests were not consistent with the pollen record. The other parameter set produced forests more consistent with paleoecological data, indicating that the climate was correct. These differences in simulated forest composition reflected inadequacies in the parameterization of air temperature effects in forest models.


Sign in / Sign up

Export Citation Format

Share Document