scholarly journals The Photochemistry of Organic Materials for Photonic Devices

2021 ◽  
Author(s):  
◽  
Ayla Penelope Middleton

<p>Optically active organic chromophores have attracted much interest in recent years for their potential for use in photonic devices. Chromophores such as compound (1) have been found to have a very high second order nonlinear susceptibility ( β ) value of 650 × 10⁻³⁰esu in dimethyl formamide.¹ The performance of 1 in a polymer film is much lower than this due to the formation of aggregates which hinder the poling process necessary to ensure a noncentrosymmetric arrangement of the molecules in order to display second order nonlinear behaviour.  The molecular aggregation behaviour of a set of second order nonlinear compounds based on compound 1 have been studied in this thesis. These compounds share the backbone shown in figure 1 with pendant groups added to the R₁ R₂ and R₃ positions, with the aim of finding substituent groups that can be added to the optically active merocyanine backbone that reduce the aggregation and increase the solubility of the compounds. This in turn will make them more suitable for use in photonics devices.  It was found that a C₁₁H₂₃ alkyl chain added to the R₃ position made the largest contribution to decreasing aggregation. Bulky groups on the R₁ and R₂ positions also reduced aggregation. As a result compounds 5 and 8, with R₃ = C₁₁H₂₃ and bulky groups attached displayed the least aggregation of the compounds studied.  ¹ See Figure 1 (pg. i): Merocyanine backbone with substituent positions marked.</p>

2021 ◽  
Author(s):  
◽  
Ayla Penelope Middleton

<p>Optically active organic chromophores have attracted much interest in recent years for their potential for use in photonic devices. Chromophores such as compound (1) have been found to have a very high second order nonlinear susceptibility ( β ) value of 650 × 10⁻³⁰esu in dimethyl formamide.¹ The performance of 1 in a polymer film is much lower than this due to the formation of aggregates which hinder the poling process necessary to ensure a noncentrosymmetric arrangement of the molecules in order to display second order nonlinear behaviour.  The molecular aggregation behaviour of a set of second order nonlinear compounds based on compound 1 have been studied in this thesis. These compounds share the backbone shown in figure 1 with pendant groups added to the R₁ R₂ and R₃ positions, with the aim of finding substituent groups that can be added to the optically active merocyanine backbone that reduce the aggregation and increase the solubility of the compounds. This in turn will make them more suitable for use in photonics devices.  It was found that a C₁₁H₂₃ alkyl chain added to the R₃ position made the largest contribution to decreasing aggregation. Bulky groups on the R₁ and R₂ positions also reduced aggregation. As a result compounds 5 and 8, with R₃ = C₁₁H₂₃ and bulky groups attached displayed the least aggregation of the compounds studied.  ¹ See Figure 1 (pg. i): Merocyanine backbone with substituent positions marked.</p>


1995 ◽  
Vol 392 ◽  
Author(s):  
Xiaoguang Yang ◽  
Duncan McBranch ◽  
Basil Swanson ◽  
Dequan Li

AbstractThe design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-π-A units bridged by methylene groups. These molecules were synthesized such that four D-π-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d33, and the average molecular alignment, ψ. We find a value of d33 = 60 pm/V at a fundamental wavelength of 890 nm, and ψ˜ 36° with respect to the surface normal.


2020 ◽  
Vol 168 ◽  
pp. 25-30
Author(s):  
Kangwei Wang ◽  
Haoliang Qian ◽  
Zhaowei Liu ◽  
Paul K. L. Yu

2000 ◽  
Vol 36 (8) ◽  
pp. 733 ◽  
Author(s):  
Y. Quiquempois ◽  
A. Villeneuve ◽  
D. Dam ◽  
K. Turcotte ◽  
J. Maier ◽  
...  

2011 ◽  
Vol 115 (1167) ◽  
pp. 315-322 ◽  
Author(s):  
G. Gibertini ◽  
F. Auteri ◽  
G. Campanardi ◽  
C. Macchi ◽  
A. Zanotti ◽  
...  

Abstract A wide aerodynamic test campaign has been carried out on the tiltrotor aircraft ERICA at the Large Wind Tunnel of Politecnico di Milano by means of a modular 1:8 scale model in order to produce a dataset necessary to better understand the aerodynamic behaviour of the aircraft and to state its definitive design. The target of the tests was the measurement of the aerodynamic forces and moments in several different configurations and different attitudes. The test program included some conditions at very high incidence and sideslip angles that typically belong to the helicopter-mode flight envelope and measurements of forces on the tail and on the tilting wings. A large amount of data has been collected that will be very useful to refine the aircraft design. In general the aircraft aerodynamics do not present any critical problems, but further optimisation is still possible. From the viewpoint of drag in the cruise configuration, the sponsons of the landing gear seem to be worth some further design refinement since they are responsible for a 20% drag increase with respect to the pure fuselage configuration. On the contrary, the wing fairing has proved to work well when the aircraft longitudinal axis is aligned with the wind, providing just a slight drag increase. Two other interesting aspects are the quite nonlinear behaviour of the side force for the intermediate sideslip angles as well as the noticeable hysteresis in the moment coefficient at very high incidence angles.


Sign in / Sign up

Export Citation Format

Share Document