scholarly journals Interference Alignment and Cancellation in Wireless Communication Systems

2021 ◽  
Author(s):  
◽  
Refik Ustok

<p>The Shannon capacity of wireless networks has a fundamental importance for network information theory. This area has recently seen remarkable progress on a variety of problems including the capacity of interference networks, X networks, cellular networks, cooperative communication networks and cognitive radio networks. While each communication scenario has its own characteristics, a common reason of these recent developments is the new idea of interference alignment. The idea of interference alignment is to consolidate the interference into smaller dimensions of signal space at each receiver and use the remaining dimensions to transmit the desired signals without any interference. However, perfect alignment of interference requires certain assumptions, such as perfect channel state information at transmitter and receiver, perfect synchronization and feedback. Today’s wireless communication systems, on the other and, do not encounter such ideal conditions. In this thesis, we cover a breadth of topics of interference alignment and cancellation schemes in wireless communication systems such as multihop relay networks, multicell networks as well as cooperation and optimisation in such systems. Our main contributions in this thesis can be summarised as follows:  • We derive analytical expressions for an interference alignment scheme in a multihop relay network with imperfect channel state information, and investigate the impact of interference on such systems where interference could accumulate due to the misalignment at each hop.  • We also address the dimensionality problem in larger wireless communication systems such as multi-cellular systems. We propose precoding schemes based on maximising signal power over interference and noise. We show that these precoding vectors would dramatically improve the rates for multi-user cellular networks in both uplink and downlink, without requiring an excessive number of dimensions. Furthermore, we investigate how to improve the receivers which can mitigate interference more efficiently.  • We also propose partial cooperation in an interference alignment and cancellation scheme. This enables us to assess the merits of varying mixture of cooperative and non-cooperative users and the gains achievable while reducing the overhead of channel estimation. In addition to this, we analytically derive expressions for the additional interference caused by imperfect channel estimation in such cooperative systems. We also show the impact of imperfect channel estimation on cooperation gains.  • Furthermore, we propose jointly optimisation of interference alignment and cancellation for multi-user multi-cellular networks in both uplink and downlink. We find the optimum set of transceivers which minimise the mean square error at each base station. We demonstrate that optimised transceivers can outperform existing interference alignment and cancellation schemes.  • Finally, we consider power adaptation and user selection schemes. The simulation results indicate that user selection and power adaptation techniques based on estimated rates can improve the overall system performance significantly.</p>

2021 ◽  
Author(s):  
◽  
Refik Ustok

<p>The Shannon capacity of wireless networks has a fundamental importance for network information theory. This area has recently seen remarkable progress on a variety of problems including the capacity of interference networks, X networks, cellular networks, cooperative communication networks and cognitive radio networks. While each communication scenario has its own characteristics, a common reason of these recent developments is the new idea of interference alignment. The idea of interference alignment is to consolidate the interference into smaller dimensions of signal space at each receiver and use the remaining dimensions to transmit the desired signals without any interference. However, perfect alignment of interference requires certain assumptions, such as perfect channel state information at transmitter and receiver, perfect synchronization and feedback. Today’s wireless communication systems, on the other and, do not encounter such ideal conditions. In this thesis, we cover a breadth of topics of interference alignment and cancellation schemes in wireless communication systems such as multihop relay networks, multicell networks as well as cooperation and optimisation in such systems. Our main contributions in this thesis can be summarised as follows:  • We derive analytical expressions for an interference alignment scheme in a multihop relay network with imperfect channel state information, and investigate the impact of interference on such systems where interference could accumulate due to the misalignment at each hop.  • We also address the dimensionality problem in larger wireless communication systems such as multi-cellular systems. We propose precoding schemes based on maximising signal power over interference and noise. We show that these precoding vectors would dramatically improve the rates for multi-user cellular networks in both uplink and downlink, without requiring an excessive number of dimensions. Furthermore, we investigate how to improve the receivers which can mitigate interference more efficiently.  • We also propose partial cooperation in an interference alignment and cancellation scheme. This enables us to assess the merits of varying mixture of cooperative and non-cooperative users and the gains achievable while reducing the overhead of channel estimation. In addition to this, we analytically derive expressions for the additional interference caused by imperfect channel estimation in such cooperative systems. We also show the impact of imperfect channel estimation on cooperation gains.  • Furthermore, we propose jointly optimisation of interference alignment and cancellation for multi-user multi-cellular networks in both uplink and downlink. We find the optimum set of transceivers which minimise the mean square error at each base station. We demonstrate that optimised transceivers can outperform existing interference alignment and cancellation schemes.  • Finally, we consider power adaptation and user selection schemes. The simulation results indicate that user selection and power adaptation techniques based on estimated rates can improve the overall system performance significantly.</p>


Author(s):  
Dr. V. Arthi

4G Wireless communication systems have the inherent capability to foster the multimedia services in terms of bandwidth and data rate. These systems have very high integrity compared to the conventional wireless communication systems. It can fully support extended multimedia services with High Definition quality, audio and video files. Wireless internet and other broad band services provided superior quality signal transmission and reception. The degree of freedom enjoyed by the technology in terms of scalability and reliability is highly commendable. Any basic wireless transmitter sends information by varying the phase of the signal. In the receiver end, the desired signal can be decoded by appropriate decoding algorithm. The degradation occurs at the conventional receivers due to lack of Channel State Information. The efficiency of 4G system purely relies on the performance of receiver and is purely dependent on the synchronization of estimated instantaneous channel. In any wireless terminal, channel state information provides the in and around status of the channel. It provides the following parameters of the propagating signal (ie) Scattering, Fading and Attenuation. The dynamic estimation of channel state information can be obtained through Enhanced Least Squares channel estimation algorithm. It is based on Multi Carrier Filter Bank Transmission system. This  kind of dynamic estimation can be done with a set of well-known sequence of  coded unique bits .For a transmitter the information propagation is initiated in the form of frame bursts. It enhances the throughput of the system to the required level.


2019 ◽  
Vol 25 ◽  
pp. 01002 ◽  
Author(s):  
Lili Zhao ◽  
Peng Zhang ◽  
Qicai Dong ◽  
Xiangyang Huang ◽  
Jianhua Zhao ◽  
...  

Wireless communication technology has been developed rapidly after entering the 21st century. Data transfer rate increased significantly as well as the bandwidth became wider and wider from 2G to 4G in wireless communication systems. Channel estimation is an import part of any communication systems; its accuracy determines the quality of the whole communication. Channel estimation methods of typical wireless communication systems such as UWB, 2G and 3G have been researched.


Sign in / Sign up

Export Citation Format

Share Document