scholarly journals Understanding distributions of invasive mammals in urban environments using remote cameras and citizen science

2021 ◽  
Author(s):  
◽  
Victor Anton

<p>Preserving biodiversity in urban environments is crucial not only for preventing local extinctions of native species, but also for educating the public about the importance of species conservation. Invasive mammalian species can have negative impacts for both people and biodiversity in urban environments. Understanding the factors influencing the distribution of these invasive species is crucial to comply with the ethical, ecological, and practical concerns associated with their management. Remote cameras are an increasingly popular tool for investigating the distribution and abundance of mammals. Yet few studies have used these cameras in urban environments. The time and effort required to classify remote camera data is the main constraint of this monitoring technique.  To determine whether employing citizen science could facilitate the use of remote cameras in urban environments, I investigated the engagement, accuracy, and efficiency of volunteers (i.e., citizen scientists) in classifying animal images recorded by remote cameras in Wellington, New Zealand. Classifications from citizen scientists were in 84.2% agreement with classifications of expert ecologists. However, accuracy varied significantly among species and volunteers. Aggregating multiple classifications per image and highlighting animal movement in the images improved the accuracy of citizen scientists. Additionally, weighting their classifications based on previous accuracy, self-assessed confidence, and the species reported reduced the number of volunteer classifications required to achieve levels of accuracy comparable to that of experts. These results illustrate that citizen science allows for accurate and efficient classifications of remote camera data from urban areas.  Using the classifications provided by citizen scientists, I then evaluated the suitability of remote cameras to monitor invasive mammals in urban environments. Based on data collected from forest and residential areas of Wellington, New Zealand, remote cameras detected significantly more European hedgehogs (Erinaceus europaeus) and rats (Rattus spp.) than tracking tunnels. Cameras, however, missed recording house mice (Mus musculus) on some occasions where tracking tunnels detected them, and vice-versa. Overall, my results demonstrate that remote cameras are a more efficient multi-species monitoring tool than tracking tunnels. Independent of habitat type, cats (Felis catus), hedgehogs, and mice were the species most frequently recorded. Data from remote cameras subsequently helped quantify differences in the occupancy rates of species between residential and forested areas furthering our ecological understanding of the distribution of invasive species in peopled landscapes.  To identify the underlying processes influencing the distribution and abundances of invasive mammals found in urban patches of vegetation, I also used remote cameras to investigate the influence of habitat quality, management efforts, interspecific interactions and seasonality on the occupancy and relative abundance of invasive mammals in 47 patches of forest within Wellington. My results indicate that distance to forest edge influences positively on the relative abundance of rodents and negatively on the relative abundance of common brushtail possums (Trichosurus vulpecula), cats, European rabbits (Oryctolagus cuniculus), and hedgehogs. The cameras also revealed a positive interaction between the occupancy of ship rats (Rattus rattus) and the abundance of Norway rats (Rattus norvegicus), a positive influence of the nearby buildings on the occupancy of cats, and how management control reduces the occupancy of target species, particularly during spring. These results illustrate the importance of using season- and species-specific approaches to identify the most important factors influencing the distribution of invasive species in urban environments.  Overall, my research highlights the benefits of engaging the public with scientific research, the advantages of using remote cameras to monitor mammals in urban environments and the importance of controlling invasive species at adequate spatial and temporal scales to ensure effective conservation management.</p>

2021 ◽  
Author(s):  
◽  
Victor Anton

<p>Preserving biodiversity in urban environments is crucial not only for preventing local extinctions of native species, but also for educating the public about the importance of species conservation. Invasive mammalian species can have negative impacts for both people and biodiversity in urban environments. Understanding the factors influencing the distribution of these invasive species is crucial to comply with the ethical, ecological, and practical concerns associated with their management. Remote cameras are an increasingly popular tool for investigating the distribution and abundance of mammals. Yet few studies have used these cameras in urban environments. The time and effort required to classify remote camera data is the main constraint of this monitoring technique.  To determine whether employing citizen science could facilitate the use of remote cameras in urban environments, I investigated the engagement, accuracy, and efficiency of volunteers (i.e., citizen scientists) in classifying animal images recorded by remote cameras in Wellington, New Zealand. Classifications from citizen scientists were in 84.2% agreement with classifications of expert ecologists. However, accuracy varied significantly among species and volunteers. Aggregating multiple classifications per image and highlighting animal movement in the images improved the accuracy of citizen scientists. Additionally, weighting their classifications based on previous accuracy, self-assessed confidence, and the species reported reduced the number of volunteer classifications required to achieve levels of accuracy comparable to that of experts. These results illustrate that citizen science allows for accurate and efficient classifications of remote camera data from urban areas.  Using the classifications provided by citizen scientists, I then evaluated the suitability of remote cameras to monitor invasive mammals in urban environments. Based on data collected from forest and residential areas of Wellington, New Zealand, remote cameras detected significantly more European hedgehogs (Erinaceus europaeus) and rats (Rattus spp.) than tracking tunnels. Cameras, however, missed recording house mice (Mus musculus) on some occasions where tracking tunnels detected them, and vice-versa. Overall, my results demonstrate that remote cameras are a more efficient multi-species monitoring tool than tracking tunnels. Independent of habitat type, cats (Felis catus), hedgehogs, and mice were the species most frequently recorded. Data from remote cameras subsequently helped quantify differences in the occupancy rates of species between residential and forested areas furthering our ecological understanding of the distribution of invasive species in peopled landscapes.  To identify the underlying processes influencing the distribution and abundances of invasive mammals found in urban patches of vegetation, I also used remote cameras to investigate the influence of habitat quality, management efforts, interspecific interactions and seasonality on the occupancy and relative abundance of invasive mammals in 47 patches of forest within Wellington. My results indicate that distance to forest edge influences positively on the relative abundance of rodents and negatively on the relative abundance of common brushtail possums (Trichosurus vulpecula), cats, European rabbits (Oryctolagus cuniculus), and hedgehogs. The cameras also revealed a positive interaction between the occupancy of ship rats (Rattus rattus) and the abundance of Norway rats (Rattus norvegicus), a positive influence of the nearby buildings on the occupancy of cats, and how management control reduces the occupancy of target species, particularly during spring. These results illustrate the importance of using season- and species-specific approaches to identify the most important factors influencing the distribution of invasive species in urban environments.  Overall, my research highlights the benefits of engaging the public with scientific research, the advantages of using remote cameras to monitor mammals in urban environments and the importance of controlling invasive species at adequate spatial and temporal scales to ensure effective conservation management.</p>


2020 ◽  
Author(s):  
V Anton ◽  
Stephen Hartley ◽  
Heiko Wittmer

© New Zealand Ecological Society. Numerous conservation projects in New Zealand aim to reduce populations of invasive mammalian predators to facilitate the recovery of native species. However, results of control efforts are often uncertain due to insufficient monitoring. Remote cameras have the potential to monitor multiple species of invasive mammals. To determine the efficiency of cameras as a multi-species monitoring tool, we compared the detection rates of remote cameras and tracking tunnels over 4 non-consecutive days across 40 sites in Wellington. On average, cameras detected significantly more hedgehogs (Erinaceus europaeus) and rats (Rattus spp.) than tracking tunnels, and their images could be used to identify rats to the species level in 50% of detections. Cameras also detected more possums (Trichosurus vulpecula) but missed recording mice (Mus musculus) on some occasions where tracking tunnels detected them, and vice-versa. We conclude that remote cameras are well-suited for simultaneously monitoring multiple species of invasive mammals in New Zealand.


2020 ◽  
Author(s):  
V Anton ◽  
Stephen Hartley ◽  
A Geldenhuis ◽  
Heiko Wittmer

©The Author(s) 2018. Published by Oxford University Press. Remotely activated cameras are increasingly used worldwide to investigate the distribution, abundance and behaviour of animals. The number of studies using remote cameras in urban ecosystems, however, is low compared to use in other ecosystems. Currently, the time and effort required to classify images is the main constraint of this monitoring technique. To determine whether, or not, citizen science might help overcome this constraint, we investigated the engagement, accuracy and efficiency of citizen scientists providing crowd-sourced classifications of animal images recorded by remote cameras in Wellington, New Zealand. Classifications from individual citizen scientists were in 84.2% agreement with the classifications of professional ecologists. Aggregating the classifications from three citizen scientists per image, and excluding false triggers and unclassifiable classifications increased their overall accuracy to 97.6%. Classifications by citizen scientists also improved if animal movement was highlighted in the images. The likelihood of citizen scientists correctly classifying images was influenced by their previous accuracy, their self-assessed confidence, and the species reported. Weighting the citizen scientist classifications based on their ability to correctly identify animals reduced from 3 to 2 the number of classifications required per sequence to classify >95% of the photographs containing cats. Citizen science is an accurate and efficient approach for classifying remote camera data from urban areas, where most of the animals are familiar to the participants. We demonstrated how appropriate tools and accounting for the accuracy of citizen scientists, allows project managers to maximise the effort of citizen scientists while ensuring high-quality data.


2020 ◽  
Author(s):  
V Anton ◽  
Stephen Hartley ◽  
A Geldenhuis ◽  
Heiko Wittmer

©The Author(s) 2018. Published by Oxford University Press. Remotely activated cameras are increasingly used worldwide to investigate the distribution, abundance and behaviour of animals. The number of studies using remote cameras in urban ecosystems, however, is low compared to use in other ecosystems. Currently, the time and effort required to classify images is the main constraint of this monitoring technique. To determine whether, or not, citizen science might help overcome this constraint, we investigated the engagement, accuracy and efficiency of citizen scientists providing crowd-sourced classifications of animal images recorded by remote cameras in Wellington, New Zealand. Classifications from individual citizen scientists were in 84.2% agreement with the classifications of professional ecologists. Aggregating the classifications from three citizen scientists per image, and excluding false triggers and unclassifiable classifications increased their overall accuracy to 97.6%. Classifications by citizen scientists also improved if animal movement was highlighted in the images. The likelihood of citizen scientists correctly classifying images was influenced by their previous accuracy, their self-assessed confidence, and the species reported. Weighting the citizen scientist classifications based on their ability to correctly identify animals reduced from 3 to 2 the number of classifications required per sequence to classify >95% of the photographs containing cats. Citizen science is an accurate and efficient approach for classifying remote camera data from urban areas, where most of the animals are familiar to the participants. We demonstrated how appropriate tools and accounting for the accuracy of citizen scientists, allows project managers to maximise the effort of citizen scientists while ensuring high-quality data.


2020 ◽  
Author(s):  
V Anton ◽  
Stephen Hartley ◽  
Heiko Wittmer

© New Zealand Ecological Society. Numerous conservation projects in New Zealand aim to reduce populations of invasive mammalian predators to facilitate the recovery of native species. However, results of control efforts are often uncertain due to insufficient monitoring. Remote cameras have the potential to monitor multiple species of invasive mammals. To determine the efficiency of cameras as a multi-species monitoring tool, we compared the detection rates of remote cameras and tracking tunnels over 4 non-consecutive days across 40 sites in Wellington. On average, cameras detected significantly more hedgehogs (Erinaceus europaeus) and rats (Rattus spp.) than tracking tunnels, and their images could be used to identify rats to the species level in 50% of detections. Cameras also detected more possums (Trichosurus vulpecula) but missed recording mice (Mus musculus) on some occasions where tracking tunnels detected them, and vice-versa. We conclude that remote cameras are well-suited for simultaneously monitoring multiple species of invasive mammals in New Zealand.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 683
Author(s):  
Marc Herremans ◽  
Karin Gielen ◽  
Jos Van Kerckhoven ◽  
Pieter Vanormelingen ◽  
Wim Veraghtert ◽  
...  

The peacock butterfly is abundant and widespread in Europe. It is generally believed to be univoltine (one generation per year): adults born in summer overwinter and reappear again in spring to reproduce. However, recent flight patterns in western Europe mostly show three peaks during the year: a first one in spring (overwintering butterflies), a second one in early summer (offspring of the spring generation), and a third one in autumn. It was thus far unclear whether this autumn flight peak was a second new generation or consisted of butterflies flying again in autumn after a summer rest (aestivation). The life cycle of one of Europe’s most common butterflies is therefore still surprisingly inadequately understood. We used hundreds of thousands of observations and thousands of pictures submitted by naturalists from the public to the online portal observation.orgin Belgium and analyzed relations between flight patterns, condition (wear), reproductive cycles, peak abundances, and phenology to clarify the current life history. We demonstrate that peacocks have shifted towards two new generations per year in recent decades. Mass citizen science data in online portals has become increasingly important in tracking the response of biodiversity to rapid environmental changes such as climate change.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 339
Author(s):  
Louise I. Lynch-O’Brien ◽  
Wayne A. Babchuk ◽  
Jenny M. Dauer ◽  
Tiffany Heng-Moss ◽  
Doug Golick

Citizen science is known for increasing the geographic, spatial, and temporal scale from which scientists can gather data. It is championed for its potential to provide experiential learning opportunities to the public. Documentation of educational outcomes and benefits for citizen scientists continues to grow. This study proposes an added benefit of these collaborations: the transference of program impacts to individuals outside of the program. The experiences of fifteen citizen scientists in entomology citizen science programs were analyzed using a constructivist grounded theory methodology. We propose the substantive-level theory of transference to describe the social process by which the educational and attitudinal impacts intended by program leaders for the program participants are filtered by citizen scientists and transferred to others. This process involves individual and external phases, each with associated actions. Transference occurred in participants who had maintained a long-term interest in nature, joined a citizen science program, shared science knowledge and experiences, acquired an expert role to others, and influenced change in others. Transference has implications for how citizen scientists are perceived by professional communities, understanding of the broader impacts and contributions of citizen science to wicked problems, program evaluation, and the design of these programs as informal science education opportunities.


2020 ◽  
Author(s):  
David Drake ◽  
Shelli Dubay ◽  
Maximilian L Allen

Abstract Coyotes are ubiquitous in habitats across North America, including in urban areas. Reviews of human–coyote encounters are limited in scope and analysis and predominantly document encounters that tend to be negative, such as human–wildlife conflict, rather than benign experiences. The objective of our study was to use citizen science reports of human–coyote interactions entered into iNaturalist to better understand the range of first person accounts of human–coyote encounters in Madison, WI. We report 398 citizen science accounts of human–coyote encounters in the Madison area between October 2015 and March 2018. Most human–coyote encounters occurred during coyote breeding season and half of all encounters occurred in moderate development land cover. Estimated level of coyote aggressiveness varied significantly, with 90% of citizen scientists scoring estimated coyote aggression as a 0 and 7% scoring estimated aggression as a 1 on a 0–5 scale (with 0 being calm and 5 being aggressive). Our best performing model explaining the estimated distance between the human observer and a coyote (our proxy for a human–coyote encounter) included the variables distance to nearest paved road, biological season of the year relative to coyote life history, and time of day/night. We demonstrate that human–coyote interactions are regularly more benign than negative, with almost all first-hand reported human–coyote encounters being benign. We encourage public outreach focusing on practices that can foster benign encounters when educating the public to facilitate human–coyote coexistence.


2021 ◽  
Vol 19 (16) ◽  
Author(s):  
Rohayu Ab Majid ◽  
Rosli Said ◽  
Jamalunlaili Abdullah ◽  
Rohana Ngah ◽  
Qi Jie Kwong

Light Rail Transit (LRT) is one of the public transports that provides a lot of benefits to the Malaysian. Yet this consumption depends on the diverse tastes of potential ridership which are influenced by various factors. However, it is very challenging to predict significant factors influencing ridership preferences. As such, the identification of these factors is very important in ensuring this transportation service really attract ridership attention. Thus, this paper intends to identify the main factors that influence ridership preference in taking LRT transportation. 28 attributes have been identified in this research which expands from four (4) main components. Data were collected from ridership’s survey, site observations and ridership statistical data. Pearson Chi-square has been employed to justify the significant status and the influence level of each LRT attribute and component factors toward ridership preference. The results show that 23 attributes recorded a significant status (<0.00) in two (2) different directions of correlation. Overall, three (3) component factors namely i) Comfortable Service, ii) Economics and iii) Indoor Environment Conditions, have influenced and contributed to the same effect on ridership considerations, as compared to the negative effects displayed by the Site Design Attributes.


Sign in / Sign up

Export Citation Format

Share Document