scholarly journals A thermo-bio-architectural framework (ThBA) for finding inspiration in nature: Biomimetic energy efficient building design

2021 ◽  
Author(s):  
◽  
Marzieh Imani

<p>Design inspired by nature has been known as biomimicry or biomimetic design that is believed to transform human technologies into a sustainable status through translation of biological models, systems, and processes. Considering energy efficiency as one of the aspects of sustainability in the concept of bio-inspired building design, the problem was how to access the solutions best matched to the design problem. Various tools for finding existing knowledge from a different domain are described but as yet there appears to be no tool for allowing building designers to access the efficient ways found in nature of producing energy, using energy, and recycling resources. What the research investigated was to find if it is possible to develop a generalised thermo-bio-architectural (ThBA) framework by use of which architects would be able to improve the energy performance of buildings in a wide range of climates, by following a systematic process that methodically connects design thermal challenges to thermal adaptation principles used in nature.  The ThBA was developed by studying biology to find how thermal regulation strategies used by living organisms can be classified and generalised. The proposed ThBA was confirmed and evaluated before it was used for the rest of the research. The biological part of the ThBA was assessed by biological experts within a focus group session. Having the ThBA confirmed, the research also investigated how the heat transfer principles in buildings can be articulated to be linked to the generalised thermal adaptation strategies in nature. For this, a series of case studies were selected and for each an energy simulation was run to analyse its thermal performance and identify its thermal challenges.  Then, the ThBA was used to introduce innovative solutions for improving the thermal performance of the case studies with big energy use to reveal unexpected techniques or technologies. This, however, necessitated its reconfiguration so as to be useful for architects.  Testing the ThBA for two extreme climates in New Zealand, highlighted the fact that the simple translation of the majority of biological thermal adaptation principles are being used by architects, although for some, the architectural equivalents did not function in exactly in the same way as biological thermoregulation strategies. The differences were seen either in the central thermoregulatory principles or the broader properties within which the key principles fitted. Apart from that, for both architectural and biological thermoregulatory strategies the heat transfer parameter and methods were the same. Given that, in a context where biomimicry is understood as the imitation of complicated thermoregulatory solutions in nature for which innovation is evolutionary achieved, the term biomimetics seems to not have a place in the context of bio-inspired energy efficient design considering the current state of technology. The ThBA, however, suggested a few strategies that might address opportunities for designing a new generation of buildings in the future. This implies that the ThBA is more useful for researchers than architects.</p>

2021 ◽  
Author(s):  
◽  
Marzieh Imani

<p>Design inspired by nature has been known as biomimicry or biomimetic design that is believed to transform human technologies into a sustainable status through translation of biological models, systems, and processes. Considering energy efficiency as one of the aspects of sustainability in the concept of bio-inspired building design, the problem was how to access the solutions best matched to the design problem. Various tools for finding existing knowledge from a different domain are described but as yet there appears to be no tool for allowing building designers to access the efficient ways found in nature of producing energy, using energy, and recycling resources. What the research investigated was to find if it is possible to develop a generalised thermo-bio-architectural (ThBA) framework by use of which architects would be able to improve the energy performance of buildings in a wide range of climates, by following a systematic process that methodically connects design thermal challenges to thermal adaptation principles used in nature.  The ThBA was developed by studying biology to find how thermal regulation strategies used by living organisms can be classified and generalised. The proposed ThBA was confirmed and evaluated before it was used for the rest of the research. The biological part of the ThBA was assessed by biological experts within a focus group session. Having the ThBA confirmed, the research also investigated how the heat transfer principles in buildings can be articulated to be linked to the generalised thermal adaptation strategies in nature. For this, a series of case studies were selected and for each an energy simulation was run to analyse its thermal performance and identify its thermal challenges.  Then, the ThBA was used to introduce innovative solutions for improving the thermal performance of the case studies with big energy use to reveal unexpected techniques or technologies. This, however, necessitated its reconfiguration so as to be useful for architects.  Testing the ThBA for two extreme climates in New Zealand, highlighted the fact that the simple translation of the majority of biological thermal adaptation principles are being used by architects, although for some, the architectural equivalents did not function in exactly in the same way as biological thermoregulation strategies. The differences were seen either in the central thermoregulatory principles or the broader properties within which the key principles fitted. Apart from that, for both architectural and biological thermoregulatory strategies the heat transfer parameter and methods were the same. Given that, in a context where biomimicry is understood as the imitation of complicated thermoregulatory solutions in nature for which innovation is evolutionary achieved, the term biomimetics seems to not have a place in the context of bio-inspired energy efficient design considering the current state of technology. The ThBA, however, suggested a few strategies that might address opportunities for designing a new generation of buildings in the future. This implies that the ThBA is more useful for researchers than architects.</p>


Author(s):  
Peter Rez

Most of the energy used by buildings goes into heating and cooling. For small buildings, such as houses, heat transfer by conduction through the sides is as much as, if not greater than, the heat transfer from air exchanges with the outside. For large buildings, such as offices and factories, the greater volume-to-surface ratio means that air exchanges are more significant. Lights, people and equipment can make significant contributions. Since the energy used depends on the difference in temperature between the inside and the outside, local climate is the most important factor that determines energy use. If heating is required, it is usually more efficient to use a heat pump than to directly burn a fossil fuel. Using diffuse daylight is always more energy efficient than lighting up a room with artificial lights, although this will set a limit on the size of buildings.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Raed I. Bourisli ◽  
Adnan A. AlAnzi

This work aims at developing a closed-form correlation between key building design variables and its energy use. The results can be utilized during the initial design stages to assess the different building shapes and designs according to their expected energy use. Prototypical, 20-floor office buildings were used. The relative compactness, footprint area, projection factor, and window-to-wall ratio were changed and the resulting buildings performances were simulated. In total, 729 different office buildings were developed and simulated in order to provide the training cases for optimizing the correlation’s coefficients. Simulations were done using the VisualDOE TM software with a Typical Meteorological Year data file, Kuwait City, Kuwait. A real-coded genetic algorithm (GA) was used to optimize the coefficients of a proposed function that relates the energy use of a building to its four key parameters. The figure of merit was the difference in the ratio of the annual energy use of a building normalized by that of a reference building. The objective was to minimize the difference between the simulated results and the four-variable function trying to predict them. Results show that the real-coded GA was able to come up with a function that estimates the thermal performance of a proposed design with an accuracy of around 96%, based on the number of buildings tested. The goodness of fit, roughly represented by R2, ranged from 0.950 to 0.994. In terms of the effects of the various parameters, the area was found to have the smallest role among the design parameters. It was also found that the accuracy of the function suffers the most when high window-to-wall ratios are combined with low projection factors. In such cases, the energy use develops a potential optimum compactness. The proposed function (and methodology) will be a great tool for designers to inexpensively explore a wide range of alternatives and assess them in terms of their energy use efficiency. It will also be of great use to municipality officials and building codes authors.


Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 105 ◽  
Author(s):  
Nadia MIRABELLA ◽  
Martin RÖCK ◽  
Marcella Ruschi Mendes SAADE ◽  
Carolin SPIRINCKX ◽  
Marc BOSMANS ◽  
...  

Globally, the building sector is responsible for more than 40% of energy use and it contributes approximately 30% of the global Greenhouse Gas (GHG) emissions. This high contribution stimulates research and policies to reduce the operational energy use and related GHG emissions of buildings. However, the environmental impacts of buildings can extend wide beyond the operational phase, and the portion of impacts related to the embodied energy of the building becomes relatively more important in low energy buildings. Therefore, the goal of the research is gaining insights into the environmental impacts of various building strategies for energy efficiency requirements compared to the life cycle environmental impacts of the whole building. The goal is to detect and investigate existing trade-offs in current approaches and solutions proposed by the research community. A literature review is driven by six fundamental and specific research questions (RQs), and performed based on two main tasks: (i) selection of literature studies, and (ii) critical analysis of the selected studies in line with the RQs. A final sample of 59 papers and 178 case studies has been collected, and key criteria are systematically analysed in a matrix. The study reveals that the high heterogeneity of the case studies makes it difficult to compare these in a straightforward way, but it allows to provide an overview of current methodological challenges and research gaps. Furthermore, the most complete studies provide valuable insights in the environmental benefits of the identified energy performance strategies over the building life cycle, but also shows the risk of burden shifting if only operational energy use is focused on, or when a limited number of environmental impact categories are assessed.


2018 ◽  
Vol 7 (4) ◽  
pp. 1-27
Author(s):  
Renas K.M. Sherko ◽  
Yusuf Arayici ◽  
Mike Kagioglou

A significant amount of energy is consumed by buildings due to ineffective design decisions with little consideration for energy efficiency. Yet, performance parameters should be considered during the early design phase, which is vital for improved energy performance and lower CO2 emissions. BIM, as a new way of working methodology, can help for performance-based design. However, it is still infancy in architectural practice about how BIM can be used to develop energy efficient design. Thus, the aim is to propose a strategic framework to guide architects about how to do performance-based design considering the local values and energy performance parameters. The research adopts a multi case study approach to gain qualitative and quantitative insights into the building energy performance considering the building design parameters. The outcome is a new design approach and protocol to assist designers to successfully use BIM for design optimization, PV technology use in design, rules-based design and performance assessment scheme reflecting local values.


2013 ◽  
pp. 1027-1046 ◽  
Author(s):  
Hakan Hisarligil ◽  
Sule Karaaslan

This chapter presents a methodological approach to residential block design for sustainable urban development for hot-summer and cold-winter climates. Taking Ankara as a case, its focus is on developing an energy efficient design process as regards residential block geometry with optimum performance for both climate and energy use. The numerous variables analyzed are orientation, building geometry and envelope, heating and cooling loads of buildings, and microclimatic conditions including solar radiation, air, and wall temperature, and wind speed. It is also important in this study to demonstrate the potential use of “free and user-friendly” simulation tools for such analysis in the early design phase for those who are not experts but have moderate knowledge of urban microclimate and energy. For this aim Weather Tool v2.00 for climate and passive design analysis, CASAnova 3.0 for building energy analysis, and ENVI-met 3.0 for microclimatic analysis are used.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1480 ◽  
Author(s):  
Qadeer Ali ◽  
Muhammad Jamaluddin Thaheem ◽  
Fahim Ullah ◽  
Samad M. E. Sepasgozar

Rising demand and limited production of electricity are instrumental in spreading the awareness of cautious energy use, leading to the global demand for energy-efficient buildings. This compels the construction industry to smartly design and effectively construct these buildings to ensure energy performance as per design expectations. However, the research tells a different tale: energy-efficient buildings have performance issues. Among several reasons behind the energy performance gap, occupant behavior is critical. The occupant behavior is dynamic and changes over time under formal and informal influences, but the traditional energy simulation programs assume it as static throughout the occupancy. Effective behavioral interventions can lead to optimized energy use. To find out the energy-saving potential based on simulated modified behavior, this study gathers primary building and occupant data from three energy-efficient office buildings in major cities of Pakistan and categorizes the occupants into high, medium, and low energy consumers. Additionally, agent-based modeling simulates the change in occupant behavior under the direct and indirect interventions over a three-year period. Finally, energy savings are quantified to highlight a 25.4% potential over the simulation period. This is a unique attempt at quantifying the potential impact on energy usage due to behavior modification which will help facility managers to plan and execute necessary interventions and software experts to develop effective tools to model the dynamic usage behavior. This will also help policymakers in devising subtle but effective behavior training strategies to reduce energy usage. Such behavioral retrofitting comes at a much lower cost than the physical or technological retrofit options to achieve the same purpose and this study establishes the foundation for it.


2020 ◽  
Vol 10 (17) ◽  
pp. 5888
Author(s):  
WoonSeong Jeong ◽  
Wei Yan ◽  
Chang Joon Lee

This study demonstrates the research and development of a visualization method called thermal performance simulation. The objective of this study is providing the results of thermal performance simulation results into building information modeling (BIM) models, displaying a series of thermal performance results, and enabling stakeholders to use the BIM tool as a common user interface in the early design stage. This method utilizes a combination of object-oriented physical modeling (OOPM) and BIM. To implement the suggested method, a specific BIM authoring tool called the application programming interface (API) was adopted, as well as an external database to maintain the thermal energy performance results from the OOPM tool. Based on this method, this study created a prototype called the thermal energy performance visualization (TEPV). The TEPV translates the information from the external database to the thermal energy performance indicator (TEPI) parameter in the BIM tool. In the TEPI, whenever BIM models are generated for building design, the thermal energy performance results are visualized by color-coding the building components in the BIM models. Visualization of thermal energy performance results enables non-engineers such as architects to explicitly inspect the simulation results. Moreover, the TEPV facilitates architects using BIM as an interface in building design to visualize building thermal energy performance, enhancing their design production at the early design stages.


2019 ◽  
Vol 9 (12) ◽  
pp. 2484 ◽  
Author(s):  
Paulien Strandberg-de Bruijn ◽  
Anna Donarelli ◽  
Kristin Balksten

With an increased focus on reducing greenhouse gas emissions, energy saving is of great importance in all sectors of society. EU directives set targets for member states to reduce energy use in buildings. Energy saving in historic buildings requires special measures, balancing energy-saving renovations against the preservation of heritage values. Traditional constructions are open to vapor diffusion and generally work differently from modern constructions. Modern materials in traditional constructions sometimes damages the original material as they are usually diffusion-tight. The aim of this study was to investigate whether hemp-lime could be used as an insulation material to improve the energy efficiency of historic timber building envelopes with a rendered façade in Sweden. The objective was to determine the actual energy savings for space heating. An additional objective was to determine the actual thermal transmittance and to study thermal buffering through in-situ measurements in a full-scale wall renovated with hemp-lime. Two full-scale wall sections were constructed at the Energy and Building Design laboratory at Lund University: A traditional post-and-plank wall with a lime render (80 mm), and a post-and-plank wall with a hemp-lime render (90 mm). Energy use for space heating was monitored continuously over a period of one year. The wall with a hemp-lime render required 33% less energy for space heating than the traditional post-and-plank wall with a lime render. This was accomplished without changing the framework, appearance or material in the render and without drastically changing the hygric properties of the façade. From the gathered data, the thermal transmittance (U-values) for both walls was calculated using two different methods, one based on material properties and the other based on energy use data. For both walls, thermal transmittance based on actual energy use data during the heating period was lower than what was expected from their material properties. This indicates that more material properties than thermal conductivity and material thickness need to be taken into account when performing energy use calculations. With hemp-lime, a renovation can be accomplished without damaging the timber structure and wooden slats, and it can be done with local traditional materials and building methods with no difference in appearance to a traditional lime render. This allows for heritage values to be preserved, while also allowing the building to comply with modern standards and with increased thermal comfort and reduced energy use.


Sign in / Sign up

Export Citation Format

Share Document