scholarly journals "THE INFLUENCE OF THE HEAT OF EXPLOSION USED EXPLOSIVES ON THE FINAL RESULTS"

Author(s):  
Yury A. Masaev ◽  
Vladislav Yu. Masaev
Keyword(s):  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ricardo Infante-Castillo ◽  
Samuel P. Hernández-Rivera

This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO) charge and 15N NMR chemical shifts of the nitro groups (15NNitro) as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP) below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533) and 15N NMR chemical shifts (R2 = 0.9531) of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT) and a 6-311+G(2d,p) basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM) based on nitroaromatic compounds.


2020 ◽  
Vol 71 (9) ◽  
pp. 87-97
Author(s):  
Titi Paraschiv ◽  
Tudor Viorel Tiganescu ◽  
George Ovidiu Iorga ◽  
Raluca Elena Ginghina ◽  
Octavian Constantin Grigoroiu

Nitrocellulose based propellants are the main materials used for ballistic and rocket applications. The chemical composition of the propellants, the loading density and propellant grain geometry are the decisive parameters that influence the performance parameters in ballistic application. In this paper the authors evaluate three models of combustion for energetic materials for the determination of heat of explosion and specific volume together with the adiabatic flame temperature. The authors select six types of propellant (two simple base propellants, two double base propellants based on nitroglycerine and two triple base propellants based on nitroguanidine) and the authors determined the heat of explosion and specific volume using a bomb calorimeter and a Julius-Peters device. The results obtained from the combustion models were compared to the experimental results and assumptions were done on the influence of pressure and temperature on the chemical composition of combustion gases produced by the confined deflagration of nitrocellulose-based propellants.


1977 ◽  
Vol 28 ◽  
pp. 291-293 ◽  
Author(s):  
H.L. Girdhar ◽  
A.J. Arora

2009 ◽  
Vol 161 (2-3) ◽  
pp. 714-717 ◽  
Author(s):  
H. Muthurajan ◽  
R. Sivabalan ◽  
N. Pon Saravanan ◽  
M.B. Talawar

The initiation and propagation of deflagration and detonation in mercury fulminate, lead azide, mercuric-5-nitrotetrazole and silver-5-nitrotetrazole have been studied using various techniques. Streak and framing high-speed photography were used to observe these events directly. The main aim has been to investigate the factors which affect deflagration-to-detonation transition (DDT) and the related phenomenon of dead-pressing, which may be regarded as a failure of the DDT process at high pressed densities. These factors include the variable properties of pressed density, void structure, confinement and charge dimension and geometry, and also fixed properties (for a given explosive) such as shock and thermal sensitivities, heat of explosion and the quantity and state of the reaction products. The nature and strength of the initiating stimulus also have a major effect on the subsequent reaction.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 172
Author(s):  
Andrzej Biessikirski ◽  
Dominik Czerwonka ◽  
Jolanta Biegańska ◽  
Łukasz Kuterasiński ◽  
Magdalena Ziąbka ◽  
...  

This work aims to evaluate the possible application of pyrolysis fuel oils obtained through the pyrolysis of waste plastics. by comparing both the blasting properties and morphology results of Ammonium Nitrate Fuel Oil (ANFO), which is applied in the mining industry, and ANFO based on pyrolysis fuel oils (FOs), as well as low-temperature properties of all tested FO samples. The low-temperature research includes the measurements of density, kinematic viscosity, flash point, pour point, and cloud point. Moreover, a stability analysis was carried out based on the Turbiscan Stability Index (TSI) coefficient. Based on the obtained results it was concluded that despite pyrolysis FOs showing some differences in comparison with index FO, none of their properties indicated that pyrolysis FOs should be excluded from possible application in ANFO. Additionally, IR, XRD, and SEM analyses were conducted for all ANFO samples. The instrumental analysis did not show any dribbling effect. The blasting tests such as velocity of detonation (VOD), the heat of explosion, and post-blast fumes revealed that VOD values were lower in comparison to the reference ANFO sample. However, the observed differences were either negligible (heat of explosion) or small enough (VOD) to conclude that polyolefin waste-derived pyrolysis fuel oils can be applied as ANFO’s fuel component.


1950 ◽  
Vol 28b (10) ◽  
pp. 644-647 ◽  
Author(s):  
C. C. Coffin ◽  
C. E. Hubley

The heat of the "explosive" crystallization of electrolytically deposited amorphous antimony has been directly determined at 40 °C. in a modified Bunsen-type calorimeter using benzalacetone as the working substance. Correction was made for the amount of antimony trichloride in the deposits and for the crystallization that had taken place between their preparation and explosion. Sixteen runs on exceptionally uniform specimens containing between 4.0 and 7.9% antimony trichloride gave 21.8 cal. per gm. for the heat of explosion, which thus appears to be independent of the antimony trichloride content.


Author(s):  
В.В. Гордеев ◽  
М.В. Казутин ◽  
Н.В. Козырев

Синтезированное в ИПХЭТ СО РАН низкочувствительное высокоэнергетическое вещество 1-метил-3-нитро-1,2,4-триазол (1Ме-3Н) рассматривается как перспективная добавка, способная увеличить силу взрыва нанотермитных композиций. В работе приведены результаты исследования силы взрыва (F) нанотермитной композиции CuO/Al/1Me-3H в зависимости от содержания 1Ме-3Н. Исследован ряд составов различной рецептурной компоновки: I – соотношение компонентов тройной смеси CuO/Al/1Me-3H соответствовало максимальной расчетной теплоте взрыва композиции (Q) при заданном содержании 1Ме-3Н; II – соотношение компонентов тройной смеси соответствовало максимальному расчётному значению давления (P), развиваемому при горении композиции в замкнутом объеме; III –соотношение компонентов базовой нанотермитной пары CuO/Al (79/21 % масс.), соответствующее максимальному расчетному значению Q, оставалось постоянным в тройной смеси; IV – соотношение компонентов базовой нанотермитной пары CuO/Al (76/24 % масс.), соответствующее максимальному расчетному значению P, оставалось постоянным в тройной смеси. Для всех типов компоновки выявлен экстремальный характер зависимости силы взрыва от содержания 1Ме-3Н, при этом максимальные значения F наблюдаются при содержании добавки 5 % для компоновки I (F = 107 %), 10 % для компоновки II (F = 128 %), 25 % для компоновки III (F = 151 %) и 30 % для компоновки IV (F = 147 %). The low-sensitivity high-energy substance 1-methyl-3-nitro-1,2,4-triazole (1Me-3H), synthesized at the IPCET SB RAS, is considered as a promising additive capable of increasing the explosion force of nanotermitic compositions. The paper presents the results of a study of the explosion force (F) of the nanothermic composition CuO / Al / 1Me-3H, depending on the content of 1Me-3H. A number of compositions of various prescription configurations were investigated: I - the ratio of the components of the ternary mixture CuO/Al/1Me-3H corresponded to the maximum calculated heat of explosion of the composition (Q) at a given content of 1Me-3H; II - the ratio of the components of the ternary mixture corresponded to the maximum calculated value of the pressure (P) developed during the combustion of the composition in a closed volume; III — the ratio of the components of the base nanothermite pair CuO/Al (79/21 %), corresponding to the maximum calculated value of Q, remained constant in the ternary mixture; IV - the ratio of the components of the base nanothermite pair CuO / Al (76/24 %), corresponding to the maximum calculated value of P, remained constant in the ternary mixture. For all types of prescription configurations, an extreme nature of the dependence of the force explosion on the content of 1Me-3H was revealed, while the maximum values of F are observed at an additive content of 5% for configuration I (F = 107%), 10% for configuration II (F = 128%), 25% for configuration III (F = 151%) and 30% for configuration IV (F = 147%).


Sign in / Sign up

Export Citation Format

Share Document