scholarly journals On Market Completions Approach to Option Pricing

2021 ◽  
Vol 9 (3) ◽  
pp. 77-93
Author(s):  
I. Vasilev ◽  
A. Melnikov

Option pricing is one of the most important problems of contemporary quantitative finance. It can be solved in complete markets with non-arbitrage option price being uniquely determined via averaging with respect to a unique risk-neutral measure. In incomplete markets, an adequate option pricing is achieved by determining an interval of non-arbitrage option prices as a region of negotiation between seller and buyer of the option. End points of this interval characterise the minimum and maximum average of discounted pay-off function over the set of equivalent risk-neutral measures. By estimating these end points, one constructs super hedging strategies providing a risk-management in such contracts. The current paper analyses an interesting approach to this pricing problem, which consists of introducing the necessary amount of auxiliary assets such that the market becomes complete with option price uniquely determined. One can estimate the interval of non-arbitrage prices by taking minimal and maximal price values from various numbers calculated with the help of different completions. It is a dual characterisation of option prices in incomplete markets, and it is described here in detail for the multivariate diffusion market model. Besides that, the paper discusses how this method can be exploited in optimal investment and partial hedging problems.

2012 ◽  
Vol 49 (3) ◽  
pp. 838-849 ◽  
Author(s):  
Oscar López ◽  
Nikita Ratanov

In this paper we propose a class of financial market models which are based on telegraph processes with alternating tendencies and jumps. It is assumed that the jumps have random sizes and that they occur when the tendencies are switching. These models are typically incomplete, but the set of equivalent martingale measures can be described in detail. We provide additional suggestions which permit arbitrage-free option prices as well as hedging strategies to be obtained.


2021 ◽  
Vol 63 ◽  
pp. 123-142
Author(s):  
Yuecai Han ◽  
Zheng Li ◽  
Chunyang Liu

We investigate the European call option pricing problem under the fractional stochastic volatility model. The stochastic volatility model is driven by both fractional Brownian motion and standard Brownian motion. We obtain an analytical solution of the European option price via the Itô’s formula for fractional Brownian motion, Malliavin calculus, derivative replication and the fundamental solution method. Some numerical simulations are given to illustrate the impact of parameters on option prices, and the results of comparison with other models are presented. doi:10.1017/S1446181121000225


1998 ◽  
Vol 01 (02) ◽  
pp. 227-233 ◽  
Author(s):  
Ola Hammarlid

I study the Bouchaud–Sornette, Schweizer and Schäl way of pricing options, presenting the methodology in accordance with Bouchaud–Sornette. The definitions of the wealth balance and risk from trading in options and stocks are presented. The problem of finding a risk minimizing strategy in an incomplete market model where a perfect hedge is not possible is analyzed. Using this strategy according to the approach of Bouchaud and Sornette the option is priced by a fair game condition. In this article I establish the equivalence between global and local risk minimization and prove an option price conjecture of Wolczyńska. I also investigate optimality for a stock portfolio with extra profit.


2001 ◽  
Vol 04 (01) ◽  
pp. 179-195 ◽  
Author(s):  
SERGEI FEDOTOV ◽  
SERGEI MIKHAILOV

The problem of determining the European-style option price in incomplete markets is examined within the framework of stochastic optimization. An analytic method based on the stochastic optimization is developed that gives the general formalism for determining the option price and the optimal trading strategy (optimal feedback control) that reduces the total risk inherent in writing the option. The cases involving transaction costs, the stochastic volatility with uncertainty, stochastic adaptive process, and forecasting process are considered. A software package for the option pricing for incomplete markets is developed and the results of numerical simulations are presented.


2012 ◽  
Vol 8 (6) ◽  
pp. 559-564
Author(s):  
John C. Gardner ◽  
Carl B. McGowan Jr

In this paper, we demonstrate how to collect the data and compute the actual value of Black-Scholes Option Pricing Model call option prices for Coca-Cola and PepsiCo.The data for the current stock price and option price are taken from Yahoo Finance and the daily returns variance is computed from daily prices.The time to maturity is computed as the number of days remaining for the stock option.The risk-free rate is obtained from the U.S. Treasury website.


2021 ◽  
pp. 1-20
Author(s):  
Y. HAN ◽  
Z. LI ◽  
C. LIU

Abstract We investigate the European call option pricing problem under the fractional stochastic volatility model. The stochastic volatility model is driven by both fractional Brownian motion and standard Brownian motion. We obtain an analytical solution of the European option price via the Itô’s formula for fractional Brownian motion, Malliavin calculus, derivative replication and the fundamental solution method. Some numerical simulations are given to illustrate the impact of parameters on option prices, and the results of comparison with other models are presented.


2017 ◽  
Vol 13 (2) ◽  
pp. 105-120
Author(s):  
Prashanta kumar Behera ◽  
Dr Ramraj T Nadar

Option pricing is one of the exigent and elementary problems of computational finance. Our aims to determine the nifty index option price through different valuation technique.  In this paper, we illustrate the techniques for pricing of options and extracting information from option prices. We also describe various ways in which this information has been used in a number of applications. When dealing with options, we inevitably encounter the Black-Scholes-Merton option pricing formula, which has revolutionized the way in which options are priced in modern time. Black and Scholes (1973) and Merton (1973) on pricing European style options assumes that stock price follows a geometric Brownian motion, which implies that the terminal stock price has a lognormal distribution. Through hedging arguments, BSM shows that the terminal stock price distribution needed for pricing option can be stated without reference to the preference parameter and to the growth rate of the stock. This is now known as the risk-neutral approach to option pricing. The terminal stock price distribution, for the purpose of pricing options, is now known as the state-price density or the risk-neutral density in contrast to the actual stock price distribution, which is sometimes referred to as the physical, objective, or historical distribution.


2010 ◽  
Vol 13 (02) ◽  
pp. 211-240 ◽  
Author(s):  
BAYE M. DIA

This paper studies the option pricing problem in a class of models in which dividend yields follow a time-homogeneous diffusion. Within this framework, we develop a new approach for valuing options based on the use of a regularized Fourier transform. We derive a pricing formula for European options which gives the option price in the form of an inverse Fourier transform and propose two methods for numerically implementing this formula. As an application of this pricing approach, we introduce the Ornstein-Uhlenbeck and the square-root dividend yield models in which we explicitly solve the pricing problem for European options. Finally we highlight the main effects of a stochastic dividend yield on option prices.


2012 ◽  
Vol 49 (03) ◽  
pp. 838-849 ◽  
Author(s):  
Oscar López ◽  
Nikita Ratanov

In this paper we propose a class of financial market models which are based on telegraph processes with alternating tendencies and jumps. It is assumed that the jumps have random sizes and that they occur when the tendencies are switching. These models are typically incomplete, but the set of equivalent martingale measures can be described in detail. We provide additional suggestions which permit arbitrage-free option prices as well as hedging strategies to be obtained.


2015 ◽  
Vol 18 (04) ◽  
pp. 1550024 ◽  
Author(s):  
KARL FRIEDRICH MINA ◽  
GERALD H. L. CHEANG ◽  
CARL CHIARELLA

We consider the problem of hedging a European-type option in a market where asset prices have jump-diffusion dynamics. It is known that markets with jumps are incomplete and that there are several risk-neutral measures one can use to price and hedge options. In order to address these issues, we approximate such a market by discretizing the jumps in an averaged sense, and complete it by including traded options in the model and hedge portfolio. Under suitable conditions, we get a unique risk-neutral measure, which is used to determine the option price integro-partial differential equation, along with the asset positions that will replicate the option payoff. Upon implementation on a particular set of stock and option prices, our approximate complete market hedge yields easily computable asset positions that equal those of the minimal variance hedge, while at the same time offers protection against upward jumps and higher profit compared to delta hedging.


Sign in / Sign up

Export Citation Format

Share Document