scholarly journals Studies on plant-parasitic nematodes associated with sweet potato (Ipomoea batatas L., Lam.) in Gombe State, Nigeria

2021 ◽  
Vol 6 (4) ◽  
pp. 477-482
Author(s):  
Jidere Caleb Iliya ◽  
Simon Lilian Dada ◽  
Sulaiman Ibrahim ◽  
Abraham Peter

Sweet potato (Ipomoea batatas L., Lam.) is one of the most frequently eaten food crops. Its production is affected by plant-parasitic nematodes as well as biotic factors. This study was conducted to document the different plant-parasitic nematodes (PPN) that limit the gainful production of sweet potato in Gombe State. Thirty soil core samples per hectare were collected at random from sweet potato farms in the three local government areas (Nafada, Kaltungo, and Yamaltu Deba) of Gombe state. The Whitehead and Hemming method and identification keys were used for the soil extraction and genera identification of the plant-parasitic nematodes respectively. A total of 15 plant-parasitic nematodes were recovered throughout the surveyed areas among which 7 are considered major nematode pests of global importance. Irrespective of the surveyed locations, Meloidogyne spp., was found to record the highest population density and prevalence value. The frequency of occurrence in Y/Deba and Nafada LGAs shows that Meloidogyne spp., wasthe most occurring (32 %) genera. In Kaltungo LGA however, Scutellonema spp., and Rotylenchusspp., were the most occurring (17 %) genera. There was a high similarity percentage (≥ 68 %) of PPN genera where 8 genera (Scutellonema spp., Nacobbus spp., Pratylenchus spp., Meloidogyne spp., Heterodera spp., Xiphinema spp., Trichodorus spp., and Rotylenchus spp.) were found to be common amongst the surveyed locations. This is the first report of plant-parasitic nematodes associated with sweet potato in Gombe state, Nigeria. Hence, it is critical to educate farmers in the regions about their effects on the crop and how to successfully manage them.

1976 ◽  
Vol 16 (81) ◽  
pp. 588 ◽  
Author(s):  
GR Stirling

Vineyards in all five of South Australia's grapegrowing districts were surveyed for plant parasitic nematodes. Root-knot nematodes (Meloidogyne spp.) occurrcd in four districts, and were present in almost all vineyards with sandy soil in the Riverland, Barossa Valley and Central districts. Four species (M. arenaria, M. hapla, M. incognita and M. javanica) were identified. Citrus nematode (Tylenchulus semipenetrans) was wide-spread in Riverland vineyards, and isolated infestations were found in other districts. Other plant parasitic nematode genera found during the survey were Helicotylenchus, Macroposthonia, Paratrichodorus, Paratylenchus, Prat ylenchus, Tylenchorh ynchus and Xiphinema.


2020 ◽  
Vol 12 (3) ◽  
pp. 608-618
Author(s):  
Ashfak A. ODALA ◽  
Rasmi A. RAMANATHAN ◽  
Usman ARERATH

Attappady is a region of immense biological importance comes under the Nilgiri Biosphere Reserve area of India at Palakkad district. Biodiversity study of this hill area has great importance in conservative science. Except a national range study for nematode fauna of banana (Musa spp.) in Indian banana fields, a detailed survey of this agriculturally and environmentally important area has not reported till now. The diversity analysis of plant parasitic nematodes was done with samples taken from rhizosphere soil and roots of banana at this area. Comparing with the reported nationwide study the present study newly reported the presence of Aphelenchus spp., Dorylaimoides spp., Hoplolaimus spp., Rotylenchulus spp., Tylenchorynchus spp. and Tylenchus spp. from the crop banana other than the already reported one’s such as Helicotylenchus spp., Meloidogyne spp., Pratylenchus spp. and Radopholus spp. The analysis of nematode genera in different banana cultivars such as Musa × paradisiaca L. (AAB) ‘Nendran’, Musa acuminata Colla (AAA) ‘Robusta’, Musa acuminata Colla (AA) ‘Kadali’ and Musa × paradisiaca L. (Mysore AAB) ‘Poovan’ revealed differences in the reaction to attack between genotypes, and that the cultivar ‘Nendran’ was the most susceptible one to plant parasitic nematodes.


2020 ◽  
Vol 110 (12) ◽  
pp. 2003-2009
Author(s):  
Catherine L. Wram ◽  
Inga Zasada

This research focused on the effects of fluazaindolizine on a diversity of plant-parasitic nematodes. In microwell assays, 24-h dose-response curves were generated for several species and populations of Meloidogyne, Pratylenchus neglectus, P. penetrans, Globodera ellingtonae, and Xiphinema americanum. In a greenhouse study, the impact of fluazaindolizine on fecundity of M. incognita, M. hapla, and M. chitwoodi was tested by exposing nematodes for 24 h in solution and inoculating on tomato. The average 24-h ED50s (dose that resulted in the immobility of 50% of exposed nematodes) for M. hapla, M. chitwoodi, and M. incognita were 325.7, 223.4, and 100.7 ppm, respectively. M. hapla had the most variation among populations, with 24-h ED50s ranging from 72 to 788 ppm. G. ellingtonae had the lowest 24-h ED50 at 30 ppm. Pratylenchus spp. were unaffected by fluazaindolizine. X. americanum was the only species where effects of fluazaindolizine were reversible, but had a 24-h ED50 that fell in the range of the Meloidogyne spp. In the greenhouse study, M. chitwoodi was the least sensitive with reproduction reaching 62% of the untreated control after a pre-exposure to 47 ppm, whereas M. incognita and M. hapla at the same exposure dose had reproduction rates of 27 and 36% of the untreated control, respectively. Despite varying in in vitro responses to fluazaindolizine, reproduction of all Meloidogyne spp. was suppressed after only 24 h of exposure. This study expanded our understanding of how G. ellingtonae, P. thornei, P. penetrans, and X. americanum respond to fluazaindolizine.


2016 ◽  
Vol 34 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Orlando Aguirre ◽  
César Chávez ◽  
Alejandro Giraud ◽  
Mario Araya

An analysis of the plant-parasitic nematodes found on the banana (Musa AAA) plantations in the provinces of Cañar, El Oro, Guayas, Los Rios and Santo Domingo of Ecuador from 2008 to 2014 was carried out. The nematode extraction was done from 25 g of fresh roots that were macerated in a blender and from which nematodes were recovered in a 0.025 mm (No 500) mesh sieve. The data were subjected to frequency analysis in PC-SAS and the absolute frequency was calculated for each individual genus. Four plant parasitic nematodes were detected and, based on their frequencies and population densities, the nematode genera in decreasing order was: Radopholus similis > Helicotylenchus spp. > Meloidogyne spp. > Pratylenchus spp. Radopholus similis was the most abundant nematode, accounting for 49 to 66% of the overall root population, followed by Helicotylenchus spp. with 29 to 45% of the population through- out the different analyzed years. From a total of 13,773 root samples, 96% contained R. similis, 91% Helicotylenchus spp., 35% Meloidogyne spp., and 25% Pratylenchus spp. and, when all of the nematodes that were present were pooled (total nematodes), 99.9% of the samples had nematodes. A large number of samples with a nematode population above the economic threshold suggested by Agrocalidad, INIAP and Anemagro (2,500-3,000 nematodes/100 g of roots) was observed in all of the years, the months and the five sampled provinces. The statistical differences (P<0.0001) detected for the nematode frequencies among the years, months and provinces, more than likely, were associated with the high number of samples included in each year, month and province because the variations in the frequencies for each nematode genus were small.


Plant Disease ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1147-1154 ◽  
Author(s):  
Daniel Téliz ◽  
Blanca B. Landa ◽  
Hava F. Rapoport ◽  
Fernando Pérez Camacho ◽  
Rafael M. Jiménez-Díaz ◽  
...  

Incidence and nematode population densities of plant-parasitic nematodes were determined in 64 samples of soil and grapevine roots collected from commercial vineyards in southern Spain between October 2003 and May 2005. In addition, a histopathological study was done of root-stock roots naturally infected by root-knot nematodes (Meloidogyne spp.). Nematodes infecting the rootstocks were identified according to conventional procedures, and the Meloidogyne spp. were furthermore identified by sequence characterized amplified region-polymerase chain reaction (SCAR-PCR) and isozyme esterase analyses. The most important plant-parasitic nematodes detected, in order of decreasing frequency of total soil infestation and root infection (percentage of samples), were Mesocriconema xenoplax (34.4%), Meloidogyne incognita (26.6%), Meloidogyne javanica (14.1%), Xiphinema index (12.5%), Xiphinema italiae (10.9%), Pratylenchus vulnus (6.3%), and Meloidogyne arenaria (1.6%). No disease symptoms were observed on aboveground plant parts of the infected grapevines, except for plants in some fields where soil was infested with the virus-vector nematodes X. index and X. italiae. Those grapevines showed a yellow mosaic pattern in leaves early in the growing season and the internode shortening characteristic of infections by Grapevine fanleaf virus. Rootstocks infected by root-knot nematodes (Meloidogyne spp.) showed distorted feeder roots and large- to moderate-sized root galls, present either singly or in clusters. Histopathology of galled roots showed a typical susceptible response to infection by root-knot nematodes: cellular alterations were induced in the cortex, endodermis, pericycle, and vascular system, including giant-cell formation and severe distortion of vascular tissues. Most Meloidogyne egg masses ocurred on the surface of the galled root tissues, a position that could facilitate dispersion of the nematode eggs and juveniles and the occurrence of secondary infections. Some of the grapevine rootstocks surveyed in this study (Paulsen 1103, Richter 110, Rupestris du Lot, and SO4) had previously been reported to be resistant to Meloidogyne spp.; however, the population densities of these nematodes found in soil and roots sampled in the present study, as well as the compatible host-parasite relationship revealed by histopathology, indicate a susceptible response to Meloidogyne spp. from southern Spain.


1970 ◽  
Vol 29 (4) ◽  
pp. 471-482
Author(s):  
S.T. Nyaku ◽  
H. Lutuf ◽  
J.O. Honger ◽  
A. Dede ◽  
F.C. Brentu ◽  
...  

Rice (Oryza sativa L.) is one of the most cultivated crops worldwide whose production in sub-Saharan Africa is extensively affected by root nematodes. The objective of this study was to identify and establish the distribution of plant-parasitic nematodes (PPNs), in rice growing fields within different regions of Ghana. Soil and root samples were taken from rice fields, namely fourteen from Volta Region, eleven from the Soil and Irrigation Research Centre (SIREC), Kpong (Eastern Region); and five from Dawhenya (Greater Accra Region). The soil samples were taken from 0-30 cm depths, together with root samples. A total of twenty-four nematode genera were identified in soil and root samples from the three regions. These included: Aphelenchus spp., Belonolaimus spp., Ditylenchus spp., Dolichodorus spp., Helicotylenchus spp., Hemicriconemoides spp. Hemicycliophora spp. Heterodera spp., Hirschmaniella spp., Hoplolaimus spp., Longidorus spp., Meloidogyne spp., Paralongidorous spp., Paratylenchus spp., Pratylenchus spp., Radopholus spp., Rhabditida spp., Rotylenchulus spp., Scutellonema spp., Trichodorus spp., Tylenchornchus spp., Tylenchulus spp., Tylenchus spp. and Xiphinema spp. In the Volta Region, Tylenchus spp. was the most abundant (29.01%) in the soil; while Meloidogyne spp. was most the abundant (36.86%) in the roots. In Dawhenya regions, Meloidogyne spp. was the most abundant (26.96%) in the soil; while Tylenchus spp. was the most abundant (25.94%) in the roots. In the Eastern Region, Meloidogyne spp. was the most abundant (41.7%) in the soil; while Pratylenchus spp. was the most abundant (36.1%) in the roots. These nematodes threaten rice production in Ghana, if not managed well in farmer’s fields.


HortScience ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 125-128
Author(s):  
Cody L. Smith ◽  
Joshua H. Freeman ◽  
Nancy Kokalis-Burelle ◽  
William P. Wechter

Fusarium wilt [caused by the fungus Fusarium oxysporum f. sp. niveum (FON)] has been a consistent problem in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] production worldwide. One method for combatting this pathogen in the field is to graft a susceptible, high-yielding scion on to a fusarium wilt-resistant rootstock. A concerning issue with rootstocks resistant to fusarium wilt is that they have not been tested for their susceptibility to plant pathogenic nematodes—specifically, root-knot nematodes (RKNs; Meloidogyne spp.) and the reniform nematode (Rotylenchulus reniformis). Preliminary findings have demonstrated that many of these Fusarium-resistant rootstocks are highly susceptible to RKNs. Research was conducted during the Spring and Fall 2015 and 2016 to evaluate the resistance to RKN and reniform nematode in rootstocks with known resistance to fusarium wilt. Six rootstocks were evaluated over the course of four experiments. A nematode-susceptible interspecific hybrid [Cucurbita maxima (Duchesne) × C. moschata (Duchesne)] rootstock ‘Carnivor’ was included as a susceptible control in both years. Results demonstrated that several Citrullus lanatus var. citroides (L.H. Bailey) rootstocks (‘Carolina Strongback’, USVL246-FR2, USVL252-FR2, and USVL-360) and ‘SP-6’ (a commercially available pollinizer cultivar) exhibited resistance to plant parasitic nematodes when compared with the susceptible control. Partial resistance was observed in USVL-482351. When compared with the control, these rootstocks also had fewer Meloidogyne spp. and R. reniformis in root tissue. These findings indicate that rootstocks may be available to manage both fusarium wilt and RKN in grafted cucurbit production system.


Sign in / Sign up

Export Citation Format

Share Document