scholarly journals Tendências no Nível do Rio de Bacias Hidrográficas do Estado do Ceará e Suas Causas Climáticas (Trends in Level River of Basin Hydrographic of the Ceará State and Its Causes Climate)

2015 ◽  
Vol 7 (5) ◽  
pp. 927
Author(s):  
Maria Ângela Cruz Macêdo dos Santos ◽  
Iuri Moreira Costa ◽  
Juliana Alcântara Costa ◽  
Antônio Edgar Mateus ◽  
Rosangela Felesmino de Sousa ◽  
...  

Utilizando o teste de Mann-Kendall, objetivou-se nesse trabalho, analisar as tendências nas séries de cotas dos rios principais dasbacias hidrográficas do Estado do Ceará. As bacias hidrográficas do Ceará estudadas aqui foram: Bacia do Médio, Alto, Baixo Jaguaribe, Bacia do Salgado, Bacia Acaraú, Bacia Curú, Bacia de Ibiapaba, Bacia do Banabuiú, Bacia Coreaú, Bacia do Litoral. Foram utilizados os dados de cotas dos rios principais dessas bacias hidrográficas, cujos nomes das bacias hidrográficas são os mesmos desses rios cearenses. Os dados foram obtidos por meio da Agência Nacional das Águas para o período de 1973 a 2013. Para identificar as possíveis causas climáticas, utilizou-se a Análise de Ondeleta, a qual identifica as escalas temporais dominantes dos fenômenos e sistemas meteorológicos. Duas dessas Bacias hidrográficas mostraram tendência de diminuição na cota de seus rios principais, enquanto outras duas apresentaram tendência de aumento.Verificou-se que a escala decadal domina sobre as variações de cotas, sugerindo que a Oscilação Decadal do Pacífico tem influência direta sobre o nível dos rios e, associada ao sinal persistente de El Niño Oscilação Sul (7 anos), promoveram aumento e diminuição das cotas, dependendo de suas fases. Desse modo, com acompanhamento hidroclimático, os gestores de recursos hídricos e setores da economia e sociedade podem tirar proveito dessas importantes informações com previsão antecipada.   A B S T R A C T Using the Mann-Kendall test, this study aimed to analyze the trends in the shares of the major rivers of the watershed of the State of Ceará series. Basinhydrographics of Ceará studied here were: Médio, Alto, BaixoJaguaribe Basin, Salgado Basin, Acaraú Basin, BaciaCurú, Ibiapaba Basin, Banabuiú Basin, Coreaú Basin, Litoral Basin. Itsused data levelsof the main rivers of these Basin hydrographics, river basins whose names are the same cearenses these rivers. Data were obtained through the National Water Agency for the period 1973 to 2013 to identify possible causes climate, we used the wavelet analysis, which identifies the dominant temporal scales phenomena and weather systems. Two of these river basins showed declining trend in share of its major rivers, while two others showed a tendency to increase. Checkthat the decadal-scale variations dominates over quota, suggesting that the Pacific Decadal Oscillation has a direct influence on the level rivers and associated with a persistent signal of El Niño Southern Oscillation (7 years), caused an increase and decrease in quotas, depending on their stages. Thus, with climatemonitoring water resource managers and sectors of the economy and society can benefit from this important information with advance forecast.   Keywords: Mann-Kendall test, Water Resources Management, José and Noé effect, Wavelet analisys.   

2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


Climate ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 71
Author(s):  
Edgard Gonzales ◽  
Eusebio Ingol

In 2017, extreme rainfall events occurred in the northern portion of Peru, causing nearly 100,000 victims, according to the National Emergency Operations Center (COEN). This climatic event was attributed to the occurrence of the El Niño Southern Oscillation (ENSO). Therefore, the main objective of this study was to determine and differentiate between the occurrence of canonical ENSO, with a new type of ENSO called “El Niño Costero” (Coastal El Niño). The polynomial equation method was used to analyze the data from the different types of existing ocean indices to determine the occurrence of ENSO. It was observed that the anomalies of sea surface temperature (SST) 2.5 °C (January 2016) generated the “Modoki El Niño” and that the anomaly of SST −0.3 °C (January 2017) generated the “Modoki La Niña”; this sequential generation generated El Niño Costero. This new knowledge about the sui generis origin of El Niño Costero, based on the observations of this analysis, will allow us to identify and obtain important information regarding the occurrence of this event. A new oceanic index called the Pacific Regional Equatorial Index (PREI) was proposed to follow the periodic evolution and forecast with greater precision a new catastrophic event related to the occurrence of El Niño Costero and to implement prevention programs.


2010 ◽  
Vol 67 (10) ◽  
pp. 3097-3112 ◽  
Author(s):  
Katrina S. Virts ◽  
John M. Wallace

Abstract Cloud fields based on the first three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission are used to investigate the relationship between cirrus within the tropical tropopause transition layer (TTL) and the Madden–Julian oscillation (MJO), the annual cycle, and El Niño–Southern Oscillation (ENSO). The TTL cirrus signature observed in association with the MJO resembles convectively induced, mixed Kelvin–Rossby wave solutions above the Pacific warm pool region. This signature is centered to the east of the peak convection and propagates eastward more rapidly than the convection; it exhibits a pronounced eastward tilt with height, suggestive of downward phase propagation and upward energy dispersion. A cirrus maximum is observed over equatorial Africa and South America when the enhanced MJO-related convection enters the western Pacific. Tropical-mean TTL cirrus is modulated by the MJO, with more than twice as much TTL cirrus fractional coverage equatorward of 10° latitude when the enhanced convection enters the Pacific than a few weeks earlier, when the convection is over the Indian Ocean. The annual cycle in cirrus clouds around the base of the TTL is equatorially asymmetric, with more cirrus observed in the summer hemisphere. Higher in the TTL, the annual cycle in cirrus clouds is more equatorially symmetric, with a maximum in the boreal winter throughout most of the tropics. The ENSO signature in TTL cirrus is marked by a zonal shift of the peak cloudiness toward the central Pacific during El Niño and toward the Maritime Continent during La Niña.


2018 ◽  
Vol 45 (12) ◽  
pp. 1093-1098
Author(s):  
Zahidul Islam

Classification of El Niño and La Niña years in a historical time period is necessary to analyze their impacts on hydrology and water resources management. In this study, various El Niño-Southern Oscillation (ENSO) indices, and how they are used to classify El Niño or La Niña years have been reviewed. Based on the review, a simple method of classifying El Niño or La Niña years has been proposed.


2018 ◽  
Vol 31 (15) ◽  
pp. 6189-6207 ◽  
Author(s):  
Scott B. Power ◽  
François P. D. Delage

Increases in greenhouse gas emissions are expected to cause changes both in climatic variability in the Pacific linked to El Niño–Southern Oscillation (ENSO) and in long-term average climate. While mean state and variability changes have been studied separately, much less is known about their combined impact or relative importance. Additionally, studies of projected changes in ENSO have tended to focus on changes in, or adjacent to, the Pacific. Here we examine projected changes in climatic conditions during El Niño years and in ENSO-driven precipitation variability in 36 CMIP5 models. The models are forced according to the RCP8.5 scenario in which there are large, unmitigated increases in greenhouse gas concentrations during the twenty-first century. We examine changes over much of the globe, including 25 widely spread regions defined in the IPCC special report Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). We confirm that precipitation variability associated with ENSO is projected to increase in the tropical Pacific, consistent with earlier research. We also find that the enhanced tropical Pacific variability drives ENSO-related variability increases in 19 SREX regions during DJF and in 18 during JJA. This externally forced increase in ENSO-driven precipitation variability around the world is on the order of 15%–20%. An increase of this size, although substantial, is easily masked at the regional level by internally generated multidecadal variability in individual runs. The projected changes in El Niño–driven precipitation variability are typically much smaller than projected changes in both mean state and ENSO neutral conditions in nearly all regions.


2006 ◽  
Vol 19 (24) ◽  
pp. 6433-6438 ◽  
Author(s):  
Edgar G. Pavia ◽  
Federico Graef ◽  
Jorge Reyes

Abstract The role of the Pacific decadal oscillation (PDO) in El Niño–Southern Oscillation (ENSO)-related Mexican climate anomalies during winter and summer is investigated. The precipitation and mean temperature data of approximately 1000 stations throughout Mexico are considered. After sorting ENSO events by warm phase (El Niño) and cold phase (La Niña) and prevailing PDO phase: warm or high (HiPDO) and cold or low (LoPDO), the authors found the following: 1) For precipitation, El Niño favors wet conditions during summers of LoPDO and during winters of HiPDO. 2) For mean temperature, cooler conditions are favored during La Niña summers and during El Niño winters, regardless of the PDO phase; however, warmer conditions are favored by the HiPDO during El Niño summers.


2020 ◽  
Vol 33 (15) ◽  
pp. 6531-6554
Author(s):  
Ryan Lagerquist ◽  
John T. Allen ◽  
Amy McGovern

AbstractThis paper describes the development and analysis of an objective climatology of warm and cold fronts over North America from 1979 to 2018. Fronts are detected by a convolutional neural network (CNN), trained to emulate fronts drawn by human meteorologists. Predictors for the CNN are surface and 850-hPa fields of temperature, specific humidity, and vector wind from the ERA5 reanalysis. Gridded probabilities from the CNN are converted to 2D frontal regions, which are used to create the climatology. Overall, warm and cold fronts are most common in the Pacific and Atlantic cyclone tracks and the lee of the Rockies. In contrast with prior research, we find that the activity of warm and cold fronts is significantly modulated by the phase and intensity of El Niño–Southern Oscillation. The influence of El Niño is significant for winter warm fronts, winter cold fronts, and spring cold fronts, with activity decreasing over the continental United States and shifting northward with the Pacific and Atlantic cyclone tracks. Long-term trends are generally not significant, although we find a poleward shift in frontal activity during the winter and spring, consistent with prior research. We also identify a number of regional patterns, such as a significant long-term increase in warm fronts in the eastern tropical Pacific Ocean, which are characterized almost entirely by moisture gradients rather than temperature gradients.


Sign in / Sign up

Export Citation Format

Share Document