scholarly journals ESTUDO DE ESTABILIDADE DO FOSFATO DISSÓDICO DE PREDNISOLONA EM CONDIÇÕES DE ESTRESSE OXIDATIVO E TÉRMICO, EM FORMULAÇÃO ORAL

2018 ◽  
Vol 35 (4) ◽  
pp. 09
Author(s):  
Cleber Antonio Lindino ◽  
Marcia Lina Mitsui ◽  
Rodolfo Ortiguara ◽  
Daiane Felin ◽  
Mauricio Ferreira Da Rosa ◽  
...  

This work was to investigate the process of degradation of the drug Prednisolone Sodium Phosphate (FSP) in oral solution dosage form through the degradation experiments, evaluating the parameters in accordance with Resolution 899/2003 ANVISA and the degradation process of the drug. The method by high performance liquid chromatography (HPLC) developed for the determination of the drug was validated to demonstrate its applicability as an indicator of stability, ensuring reliability. After the method be validated to study the degradation of the drug, it was shown that drastic conditions of oxidative stress (H O 30%) and 2 2 temperature 60°C, the degradation of the drug is dependent on its concentration (first order kinetics). The results were  satisfactory, showing that this method is suitable to investigate the formation of degradation products in oral dosage form solution

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4430
Author(s):  
Anna Gumieniczek ◽  
Anna Berecka-Rycerz ◽  
Tomasz Mroczek ◽  
Krzysztof Wojtanowski

Firstly, metformin and repaglinide were degraded under high temperature/humidity, UV/VIS light, in different pH and oxidative conditions. Secondly, a new validated LC-UV method was examined, as to whether it validly determined these drugs in the presence of their degradation products and whether it is suitable for estimating degradation kinetics. Finally, the respective LC-MS method was used to identify the degradation products. In addition, using FT-IR method, the stability of metformin and repaglinide was scrutinized in the presence of polyvinylpyrrolidone (PVP), mannitol, magnesium stearate, and lactose. Significant degradation of metformin, following the first order kinetics, was observed in alkaline medium. In the case of repaglinide, the most significant and quickest degradation, following the first order kinetics, was observed in acidic and oxidative media (0.1 M HCl and 3% H2O2). Two new degradation products of metformin and nine new degradation products of repaglinide were detected and identified when the stressed samples were examined by our LC-MS method. What is more, the presence of PVP, mannitol, and magnesium stearate proved to affect the stability of metformin, while repaglinide stability was affected in the presence of PVP and magnesium stearate.


Author(s):  
Xingang Meng ◽  
Lingzhu Chen ◽  
Yuping Zhang ◽  
Deyu Hu ◽  
Baoan Song

Hydrolysis and photolysis kinetics of Fubianezuofeng (FBEZF) in water were investigated in detail. The hydrolysis half-lives of FBEZF depending on pH, initial concentration, and temperature were (14.44 d at pH = 5; 1.60 d at pH = 7), (36.48 h at 1.0 mg L−1; 38.51 h at 5.0 mg L−1; and 31.51 h at 10.0 mg L−1), and (77.02 h at 15 °C; 38.51 h at 25 °C; 19.80 h at 35 °C; and 3.00 h at 45 °C), respectively. The photolysis half-life of FBEZF in different initial concentrations were 8.77 h at 1.0 mg L−1, 8.35 h at 5.0 mg L−1, and 8.66 h at 10.0 mg L−1, respectively. Results indicated that the degradation of FBEZF followed first-order kinetics, as the initial concentration of FBEZF only had a slight effect on the UV irradiation effects, and the increase in pH and temperature can substantially accelerate the degradation. The hydrolysis Ea of FBEZF was 49.90 kJ mol−1, which indicates that FBEZF belongs to medium hydrolysis. In addition, the degradation products were identified using ultra-high-performance liquid chromatography coupled with an Orbitrap high-resolution mass spectrometer. One degradation product was extracted and further analyzed by 1H-NMR, 13C-NMR, 19F-NMR, and MS. The degradation product was identified as 2-(4-fluorobenazyl)-5-methoxy-1,3,4-oxadiazole, therefore a degradation mechanism of FBEZF in water was proposed. The research on FBEZF can be helpful for its safety assessment and increase the understanding of FBEZF in water environments.


2010 ◽  
Vol 93 (2) ◽  
pp. 516-522 ◽  
Author(s):  
Tushar G Barot ◽  
Popatbhai K Patel

Abstract A simple and accurate method to determine tadalafil (TAD) in pure powder and tablet dosage form was developed and validated using HPLC. The separation was achieved on an Xterra RP18 column (150 4.6 mm id, 3.5 m) in the isocratic mode using bufferacetonitrile (70 + 30, v/v), adjusted to pH 7.00 0.05 with triethylamine as the mobile phase at a flow rate of 1.0 mL/min. The photodiode array detector was set at 225 nm. Quantification was achieved over the concentration range of 50.7152.10 g/mL with mean recovery of 100.26 0.75. The method was validated and found to be simple, accurate, precise, and specific. The method was successfully applied for the determination of TAD in pure powder and tablet dosage form without interference from common excipients or degradation products.


2017 ◽  
Vol 75 (9) ◽  
pp. 2163-2170 ◽  
Author(s):  
N. Zhang ◽  
J. M. Li ◽  
G. G. Liu ◽  
X. L. Chen ◽  
K. Jiang

Diclofenac (DCF) is one of the most frequently detected pharmaceuticals in various water samples. This paper studied the effects of aquatic environmental factors (pH, temperature and dissolved organic matter) on photodegradation of DCF under simulated sunlight. The results demonstrate that degradation pathways proceed via pseudo first-order kinetics in all cases and the photodegradation of DCF by simulated sunlight. Thermodynamic study indicated that the photodegradation course is spontaneous, exothermic and irreversible. The rate constant gradually increased when the pH increased from 3 to 5, then decreased when the pH increased from 5 to 8, and finally increased when the pH further increased from 8 to 12. Humic acid inhibited the photodegradation of DCF. Three kinds of main degradation products were observed by high performance liquid chromatography/mass spectrometry and the degradation pathways were suggested. A toxicity test using Photobacterium phosphoreum T3 Sp indicated the generation of some more toxic products than DCF.


2012 ◽  
Vol 10 (1) ◽  
pp. 232-240 ◽  
Author(s):  
Robert Skibiński

AbstractPhotodegradation of quetiapine under UVC irradiation in methanol solution was investigated and structural elucidation of its photodegradation products was performed with the use of the reversed phase UHPLC system coupled with accurate mass hybrid ESI-Q-TOF mass spectrometer. During one run all essential data for the determination of photodegradation kinetics and for the structural elucidation of the products was collected with the use of auto MS/MS mode. Five degradation products were found and their masses and formulas were obtained with high accuracy (0.26–5.02 ppm). For all the analyzed compounds, MS/MS fragmentation spectra were also obtained allowing structural elucidation of the unknown degradation products and indicating photodegradation pathways of quetiapine. The main photodegradation product was identified as 2-[2-[4-(5-oxidodibenzo[b,f][1,4]thiazepin-11-yl)-1-piperazinyl]ethoxy]-ethanol and the photodegradation reaction yields the first-order kinetics with the rate constant k = 0.1094 h−1.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1305
Author(s):  
Prawez Alam ◽  
Faiyaz Shakeel ◽  
Mohammed H. Alqarni ◽  
Ahmed I. Foudah ◽  
Md. Faiyazuddin ◽  
...  

The greenness evaluation of literature analytical methods for pterostilbene (PT) analysis was not performed. Accordingly, the rapid, sensitive, and green/sustainable reversed-phase high-performance thin-layer chromatography (RP-HPTLC) method was developed and compared to the normal-phase (NP)-HPTLC (NP-HPTLC) for the estimation of PT with a classical univariate calibration. The RP quantification of PT was performed using green solvent systems; however, the NP analysis of PT was performed using routine solvent systems. The PT was detected at 302 nm for both of the methods. The greenness scores for the current analytical assays were evaluated by the analytical GREEnness (AGREE) metric approach. The classical univariate calibration for RP and NP methods indicated the linearity range as 10–1600 and 30–400 ng band−1, respectively. The RP method was more reliable for PT analysis compared to the NP method. The PT contents in commercial capsule dosage form were found to be 100.84% using the RP method; however, the PT contents in commercial capsule dosage form were determined as 92.59% using the NP method. The AGREE scores for RP and NP methods were 0.78 and 0.46, respectively. The sustainable RP-HPTLC assay was able to detect PT in the presence of its degradation products, and hence it can be considered as a selective and stability-indicating method. Accordingly, the RP-HPTLC method with univariate calibration has been considered as a superior method over the NP-HPTLC method for PT analysis.


Sign in / Sign up

Export Citation Format

Share Document