scholarly journals Determination of Chemical Stability of Two Oral Antidiabetics, Metformin and Repaglinide in the Solid State and Solutions Using LC-UV, LC-MS, and FT-IR Methods

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4430
Author(s):  
Anna Gumieniczek ◽  
Anna Berecka-Rycerz ◽  
Tomasz Mroczek ◽  
Krzysztof Wojtanowski

Firstly, metformin and repaglinide were degraded under high temperature/humidity, UV/VIS light, in different pH and oxidative conditions. Secondly, a new validated LC-UV method was examined, as to whether it validly determined these drugs in the presence of their degradation products and whether it is suitable for estimating degradation kinetics. Finally, the respective LC-MS method was used to identify the degradation products. In addition, using FT-IR method, the stability of metformin and repaglinide was scrutinized in the presence of polyvinylpyrrolidone (PVP), mannitol, magnesium stearate, and lactose. Significant degradation of metformin, following the first order kinetics, was observed in alkaline medium. In the case of repaglinide, the most significant and quickest degradation, following the first order kinetics, was observed in acidic and oxidative media (0.1 M HCl and 3% H2O2). Two new degradation products of metformin and nine new degradation products of repaglinide were detected and identified when the stressed samples were examined by our LC-MS method. What is more, the presence of PVP, mannitol, and magnesium stearate proved to affect the stability of metformin, while repaglinide stability was affected in the presence of PVP and magnesium stearate.

2013 ◽  
Vol 63 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Atul Awasthi ◽  
Majid Razzak ◽  
Raida Al-Kassas ◽  
Joanne Harvey ◽  
Sanjay Garg

The aim of this study was to evaluate stability characteristics and kinetics behavior of abamectin (ABM) as a 1 % (m/V) topical veterinary solution. During the study, samples stressed at 55 and 70 °C were regularly analyzed for several parameters over 8 weeks on a chromatographic (HPLC) system, using a Prodigy C18, 250 x 4.6 mm, 5-μm, column eluting with 15 : 34 : 51 (V/V/V) water/methanol/ acetonitrile as mobile phase. The HPLC method was validated for precision, accuracy, linearity and specificity, and was found to be stability indicating. The results showed that degradation of ABM followed first-order kinetics and data on loss in kobs (s-1) and half life (t1/2, days) demonstrated ABM showing the maximum stability in glycerol formal. The degradation behavior of ABM varies from solvent to solvent. The effect of added alkali on pH change and loss of ABM was studied and found to be unique for all solvents and very distinct from typical hydrolysis degradation. The present study may serve as a platform to design and develop topical non-aqueous solutions of ABM for veterinary use given no such comprehensive efforts have been published to date on the stability profile of ABM in non-aqueous solvents.


2018 ◽  
Vol 16 (1) ◽  
pp. 116-132 ◽  
Author(s):  
Anna Gumieniczek ◽  
Hanna Trębacz ◽  
Łukasz Komsta ◽  
Agnieszka Atras ◽  
Beata Jopa ◽  
...  

AbstractIt is well known that drugs can directly react with excipients. In addition, excipients can be a source of impurities that either directly react with drugs or catalyze their degradation. Thus, binary mixtures of three diuretics, torasemide, furosemide and amiloride with different excipients,i.e. citric acid anhydrous, povidone K25 (PVP), magnesium stearate (Mg stearate), lactose, D-mannitol, glycine, calcium hydrogen phosphate anhydrous (CaHPO4) and starch, were examined to detect interactions. High temperature and humidity or UV/VIS irradiation were applied as stressing conditions. Differential scanning calorimetry (DSC), FT-IR and NIR were used to adequately collect information. In addition, chemometric assessments of NIR signals with principal component analysis (PCA) and ANOVA were applied.Between the excipients examined, lactose and starch did not show any interactions while citric acid, PVP, Mg stearate and glycine were peculiarly operative. Some of these interactions were shown without any stress, while others were caused or accelerated by high temperature and humidity, and less by UV/VIS light. Based on these results, potential mechanisms for the observed interactions were proposed Finally, we conclude that selection of appropriate excipients for torasemide, furosemide and amiloride is an important question to minimize their degradation processes, especially when new types of formulations are being manufactured.


2021 ◽  
Author(s):  
Chubraider Xavier ◽  
Bianca Rebelo Lopes ◽  
Caue Ribeiro ◽  
Eduardo Bessa Azevedo

Abstract Bisphenol A (BPA), a common polymer plasticizer, is a contaminant of emerging concern with endocrine disrupting activity. Among existing abatement methods, photodegradation demands easily fabricated, inexpensive, high photoactive catalysts, leading to non-toxic byproducts after degradation. It is proposed an optimized (surface response methodology) catalyst for those goals: graphitic carbon nitride impregnated with reduced graphene oxide. The method was based on the sonication of preformed particles followed by reduction with hydrazine in reflux, a methodology that allows for better reproducibility and larger specific surface areas. The catalyst removed 90% of BPA (100 mL, 100 µg L− 1) in 90 min under UV irradiation (365 nm, 26 W) compared to 50% with pure g-C3N4 (pseudo-first-order kinetics). Tests with radicals scavengers revealed that superoxide radical was the main oxidation agent in the system. By mass spectrometry, two major degradation products were identified, which were less ecotoxic than BPA towards a series of organisms, according to in silico estimations performed with the ECOSAR 2.0 software.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1963
Author(s):  
María Esther Martínez-Navarro ◽  
Cristina Cebrián-Tarancón ◽  
José Oliva ◽  
María Rosario Salinas ◽  
Gonzalo L. Alonso

Although olives leaves are currently considered a waste material from oil mills, they have great potential to be transformed into by-products due to their high oleuropein content. Oleuropein is a glycoside precursor of hydroxytyrosol, which is the phenolic compound with the highest antioxidant capacity in nature and which is associated with multiple health benefits. For this reason, the demand for oleuropein is growing in the pharmaceutical, cosmetic and food sectors. The objective of this study is to determine the stability of oleuropein in olive leaves from oil mills in solid and aqueous forms under different conditions of temperature, relative humidity and lighting. The results indicate that the degradation of oleuropein conforms well to first-order kinetics. The rate constants at the temperatures tested in the aqueous extracts indicate activation energies from RTl to 80 °C and from 7 °C to 14 °C, as the degradation reactions were different in these ranges. Furthermore, olive leaf powder stored at any temperature with an RH ≥ 57% showed greater stability after six months, which is an encouraging result for the storage and transformation of this waste in oil mills.


2018 ◽  
Vol 35 (4) ◽  
pp. 09
Author(s):  
Cleber Antonio Lindino ◽  
Marcia Lina Mitsui ◽  
Rodolfo Ortiguara ◽  
Daiane Felin ◽  
Mauricio Ferreira Da Rosa ◽  
...  

This work was to investigate the process of degradation of the drug Prednisolone Sodium Phosphate (FSP) in oral solution dosage form through the degradation experiments, evaluating the parameters in accordance with Resolution 899/2003 ANVISA and the degradation process of the drug. The method by high performance liquid chromatography (HPLC) developed for the determination of the drug was validated to demonstrate its applicability as an indicator of stability, ensuring reliability. After the method be validated to study the degradation of the drug, it was shown that drastic conditions of oxidative stress (H O 30%) and 2 2 temperature 60°C, the degradation of the drug is dependent on its concentration (first order kinetics). The results were  satisfactory, showing that this method is suitable to investigate the formation of degradation products in oral dosage form solution


2012 ◽  
Vol 10 (1) ◽  
pp. 232-240 ◽  
Author(s):  
Robert Skibiński

AbstractPhotodegradation of quetiapine under UVC irradiation in methanol solution was investigated and structural elucidation of its photodegradation products was performed with the use of the reversed phase UHPLC system coupled with accurate mass hybrid ESI-Q-TOF mass spectrometer. During one run all essential data for the determination of photodegradation kinetics and for the structural elucidation of the products was collected with the use of auto MS/MS mode. Five degradation products were found and their masses and formulas were obtained with high accuracy (0.26–5.02 ppm). For all the analyzed compounds, MS/MS fragmentation spectra were also obtained allowing structural elucidation of the unknown degradation products and indicating photodegradation pathways of quetiapine. The main photodegradation product was identified as 2-[2-[4-(5-oxidodibenzo[b,f][1,4]thiazepin-11-yl)-1-piperazinyl]ethoxy]-ethanol and the photodegradation reaction yields the first-order kinetics with the rate constant k = 0.1094 h−1.


2008 ◽  
Vol 73 (3) ◽  
pp. 271-282 ◽  
Author(s):  
Jelena Zvezdanovic ◽  
Dejan Markovic

The stability of chlorophylls toward UV irradiation was studied by Vis spectrophotometry in extracts containing mixtures of photosynthetic pigments in acetone and n-hexane. The chlorophylls underwent destruction (bleaching) obeying first-order kinetics. The bleaching was governed by three major factors: the energy input of the UV photons, the concentration of the chlorophylls and the polarity of the solvent, implying different molecular organizations of the chlorophylls in the two solvents.


2021 ◽  
Vol 02 ◽  
Author(s):  
Emmanuel M. de la Fournière ◽  
Jorge M. Meichtry ◽  
Graciela S. Custo ◽  
Eduardo A. Gautier ◽  
Marta I. Litter

Background: Thiomersal (TM), a complex between 2-mercaptobenzoic acid (2-MBA) and ethylmercury (C2H5Hg+), is an antimicrobial preservative used in immunological, ophthalmic, cosmetic products, and vaccines. Objective: TM has been treated by UV/TiO2 photocatalysis in the presence or absence of oxygen at acidic pH. C2H5Hg+, 2-MBA, and 2-sulfobenzoic acid (2-SBA) were found as products. A 2-SBA photocatalytic treatment was undertaken to study sulfur evolution. Methods: Photocatalytic runs were performed using a UVA lamp (λmax = 352 nm), open to the air or under N2. A suspension of the corresponding TM or 2-SBA salt and TiO2 was prepared, and pH was adjusted. Suspensions were stirred in the dark for 30 min and then irradiated. TM, 2-MBA, 2-SBA, and C2H5Hg+ were quantified by HPLC, sulfur by TXRF, and the deposits on the photocatalyst were analyzed by chemical reactions. The mineralization degree was followed by TOC. Sulfate was determined using BaCl2 at 580 nm. Results: Photocatalytic destruction of TM and total C2H5Hg+ was complete under N2 and air, but TM degradation was much faster in air. The evolution of TM and the products followed a pseudo-first-order kinetics. Conclusion: TiO2-photocatalytic degradation is a suitable technique for the treatment of TM and its degradation products. In contrast to other organomercurial compounds, TM degradation is faster in the presence of O2, indicating that the oxidative mechanism is the preferred pathway. A significant TM mineralization (> 60%, NPOC and total S) was obtained. TM was more easily degraded than 2-SBA. Sulfate was the final product.


2019 ◽  
Vol 29 ◽  
pp. 1-16
Author(s):  
Rafael Romero Toledo ◽  
Víctor Ruiz Santoyo ◽  
Ulises Zurita Luna ◽  
Gustavo Rangel Porras ◽  
Merced Martínez Rosales

A spheroidal agglomerate γ-Al2O3 adsorbent obtained from pseudoboehmite for effective removal of fluoride from aqueous medium was investigated in the present study. The surface properties were characterized by several techniques: XRD, physisorption of N2, FE-SEM/EDS, 27Al NMR, FT-IR Pyridine adsorption, PZ and particle size. Batch experiments were conducted and they were compared with a commercial activated alumina (AA). The process was carried out at pH 5, 7, and 9, then at 25 and 35 ºC. Batch experimental results indicated that the spheroidal agglomerates of γ-Al2O3 remove up to 15 mg/g with a higher adsorption capacity than AA of 13 mg/g, at pH 5, studied at 25 and 35 °C. The F− adsorption processes in γ-Al2O3 and AA followed the pseudo-first-order kinetics and the Langmuir isotherm. The results showed an adsorbent effective for removal of F−.


2021 ◽  
Vol 10 (1) ◽  
pp. 20-28
Author(s):  
Ivana Savić-Gajić ◽  
Ivan Savić ◽  
Predrag Sibinović ◽  
Valentina Marinković

In this study, the modified stability-indicating RP-HPLC method was validated for quantitative analysis of amlodipine besylate in the presence of its impurity D (3-ethyl 5-methyl 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-6-methylpyridine-3,5-dicarboxylate). The method was applied for the determination of an analyte in the tablets and irradiated samples packed in the primary packaging (Alu/PVC/PVDC blister packaging). The efficient chromatographic separation was achieved using a ZORBAX Eclipse XDB-C18 column (4.6×250 mm, 5 mm) with isocratic elution of mobile phase which consisted of acetonitrile:methanol:triethylamine solution (15:35:50, v/v/v) (pH 3.0). The flow rate of the mobile phase was 1 mL min-1, while the detection of amlodipine besylate was carried out at 273 nm. Amlodipine besylate and its impurity D were identified at the retention times of 16.529 min and 2.575 min, respectively. The linearity of the method with the coefficient of determination of 0.999 was confirmed in the concentration range of 10 - 75 µg mL-1 for amlodipine besylate. The limit of detection was 0.2 µg mL-1, while the limit of quantification was 0.66 µg mL-1. After UV and Vis radiation of the tablets packed in the primary packaging, the content of amlodipine besylate was reduced by 22.38% and 19.89%, respectively. The presence of new degradation products was not detected under the given chromatographic conditions. The photodegradation of amlodipine besylate followed pseudo-first-order kinetics. Based on the half-life of amlodipine besylate (38.4 days for UV radiation and 43.3 days for Vis radiation), it was concluded that amlodipine besylate in the tablets has satisfactory photostability after its packing in the Alu/PVC/PVDC blister packaging.


Sign in / Sign up

Export Citation Format

Share Document