scholarly journals DIAGNÓSTICO AMBIENTAL DE METAIS NO SEDIMENTO DE CÓRREGOS ADJACENTES A ÁREAS DE CULTIVO DE BANANA (MUSA SPP.) NO ESTADO DE SÃO PAULO, BRASIL

2017 ◽  
Vol 38 (1) ◽  
pp. 136
Author(s):  
Juliano José Corbi ◽  
Priscila Kleine ◽  
Susana Trivinho Strixino ◽  
Ademir Dos Santos

The State of São Paulo is the great banana producer with 1.17 million tons per year. In this area, 33.113 ha are destined to the production of 810.000 tons of banana. The use fertilizers in the banana plant cultivation, in addition with deforestation of riparian vegetation are responsible for impacts on the hydric resources. This work deals with the possible impact of banana activity in the sediments of 10 streams by the study of 7 metals (Cd, Cu, Zn, Fe, Mn, Cr and Ni). The results show that there is a higher concentration of metals in streams with banana cultivation than forested streams. Although, with exception of Ni, the values of metals detected are above to the Threshold Effect Level (TEL) and the Probable Effect Level (PEL) for sediments.

Environments ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 31 ◽  
Author(s):  
Régis Vivien ◽  
Carmen Casado-Martínez ◽  
Michel Lafont ◽  
Benoit J.D. Ferrari

Aquatic oligochaetes, comprising a large number of species showing various degrees of resistance to chemical pollution, are recognized as valuable bioindicators of sediments’ quality. In the Geneva area (Switzerland), oligochaete tools were previously tested for assessing the biological quality of stream sediments, and effect thresholds of combined metals (quotients) in sediments were defined. The aims of the present study were to update this previous work with new data acquired in different cantons of Switzerland and to establish effect thresholds on oligochaete communities for individual metals and for combined metals. The oligochaete metrics “Oligochaete index of sediment bioindication (IOBS)”, “oligochaete density” and “percentage of tubificids without hair setae” proved pertinent for assessing the effects of metals and organic matter in sediments. We established a threshold effect level (TELoligo) and probable effect level (PELoligo) for eight metals in sediments (Cr, Ni, Zn, Cu, Pb, Cd, Hg and As) as well as a probable effect level for these metals combined (mPELoligo-Q). These thresholds could be used directly to screen for alteration of in situ communities restricted to sediments and/or for establishing sediment quality standards based on a combination of different biological and ecotoxicological tools.


2018 ◽  
Vol 9 (7) ◽  
pp. 236-242
Author(s):  
Marcelo Uarthe Grimmler ◽  
Francisco Osvaldo Peres Pereira ◽  
Lucas Aldrigui Silveira ◽  
Leandro Dos Santos ◽  
Pedro José Sanches Filho

The Mangueira Lagoon is 123 km long and 7.6 km wide at its widest point, with an average depth of 2.5 m. By the fact that this lagoon is one of the youngest geological formations on Earth (only 4.5 thousand years), little is known about the geology of its sediments. This work describes the concentration of the toxic metals Cr, Cu, Ni, Pb and Zn in surface sediments samples of Mangueira Lagoon. The sediment samples were collected and underwent pseudo-acid digestion (aqua regia / perchloric acid). The extracts obtained were analyzed by atomic absorption spectroscopy in flame. Cu and Zn were detected at all points during the test. Zn is a major element, ranging from 2.5 mg kg-1 ± 0.3% to 4.1 mg kg-1 ± 2.4%, followed by Cu with values between 2.0 mg kg-1 ± 8.5% to 2.5 mg kg-1 ± 4.2%. Considering the parameters established by the CCME (Canadian Environmental Quality Guidelines), TEL (Threshold Effect Level) and PEL (Probable Effect Level), the concentrations of toxic metals found in the surface sediment were low and showed low environmental impacts. These results constitute a contribution to a better understanding of the processes that occur in the region, serving as a basis for future work.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 545 ◽  
Author(s):  
Jinqing Liu ◽  
Ping Yin ◽  
Xiaoying Chen ◽  
Ke Cao

26 river bank sediments and 15 estuary seafloor sediments were sampled from the Dagu River and the estuary of Northwestern Jiaozhou Bay to determine contaminations of heavy metals and metalloids (Cu, Pb, Zn, Cr, Cd, Hg and As). The trace metal contents in sediment from the estuary area were much higher than those of the river. Correlation analysis showed that except for Pb, the metals were mainly controlled by the grain size, and enriched by adsorption of aluminosilicate minerals, Fe/Mn oxides and organic matter in river and estuary sediments. In addition to Cu in some stations, the metals met the requirements of the marine organism and humans for the quality of the marine environment. The concentrations of Cu, Pb, Cr, Hg and As were between the threshold effect level (TEL) and probable effect level (PEL), indicating those metals might have occasional adverse effects. Results of Enrichment Factor values revealed that the entire study area was enriched in Pb and Hg, at moderate environmental risk, but the estuary was more significant. Pb and Hg contaminations in this area were mainly from coal combustion and automobile emissions. River runoff and atmospheric deposition dominated the metals distribution and enrichment in the study area. Contaminants in sediments entering the estuary were further transported to the south and east under the river runoff and reciprocating current in the Jiaozhou Bay.


2020 ◽  
Vol 29 (7) ◽  
pp. 1154-1166
Author(s):  
Özde BAKAK ◽  
Filiz KÜÇÜKSEZGİN ◽  
Faik Erdeniz ÖZEL

Concentrations of Al, Fe, As, Co, Cr, Cu, Mn, Ni, Pb, Zn, Hg, and organic carbon, and grain size distribution were investigated in the surface sediments of 7 sampling stations in the Sığacık Bay (western Anatolia) in December 2016. At all of the sampling stations, the concentrations of Pb, Ni, Cr, and As were higher than the average shale values. The highest concentrations of Pb, Cu, Zn, As, and Hg were found at stations near Doğanbey Cape. The possible sources of pollution were evaluated using several parameters: the enrichment factor (Ef), contamination factor (Cf), and contamination degree (Cd). The Ef values ranged between 0.12 and 7.61 in the bay. The high Ef (>1.5) values of Pb, Cu, Ni, Co, and As were assessed to explain the influence of anthropogenic sources. Additionally, the Cf values ranged from 0.46 to 5.61, while the Cd values ranged from 11.69 to 20.45 in the study area. The Cd of the Cr and As ranged between moderate and considerable, and the highest Cd was measured at stations near Doğanbey Cape. Additionally, the pollution degrees were assessed using sediment quality guidelines (SQGs), the threshold effect level (TEL), the probable effect level (PEL), the effects range low (ERL), and the effects range median (ERM). It was demonstrated that the sediments were generally heavily polluted with Cr and Ni, and moderately with Pb and Cu, according to the numerical SQGs. The concentrations of Pb, Cr, Cu, Zn, and Ni were above the TEL, while Cr and Ni were also higher than the PEL levels for all of the samples.


2005 ◽  
Vol 40 (4) ◽  
pp. 389-401 ◽  
Author(s):  
K. Wayne Forsythe ◽  
Chris H. Marvin

Abstract Despite significant reductions in contaminant concentrations over the past 30 years, large areas within Lake Erie and Lake Ontario still exceed Canadian sediment quality guidelines. Hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), lead (Pb) and mercury (Hg) can persist for long periods of time in the environment and cause significant ecosystem damage. Analyses of the spatial distribution of these contaminants were carried out using a GIS-based kriging technique. Initially, statistically valid results were obtained for three of four contaminants in Lake Erie (HCB, Pb, Hg) and two of four (HCB, Hg) in Lake Ontario. Acceptable concentration estimates were subsequently achieved for all contaminants following log-normal transformation kriging analyses. In general, the concentration of contaminants was lower in sediment collected in Lake Erie than in Lake Ontario. In many areas of Lake Erie, the concentrations were under both the probable effect level (PEL) and the threshold effect level (TEL), which relate to the severity of adverse biological effects that may be expected. Greater concentrations of these contaminants were observed in Lake Ontario sediments, which can be partly explained by the bathymetry and current circulation patterns in the lake.


2017 ◽  
Vol 27 (9) ◽  
pp. 616-617 ◽  
Author(s):  
Fredi Alexander Diaz-Quijano ◽  
Alexandre Dias Porto Chiavegatto Filho

2020 ◽  
Author(s):  
Anabela Reis ◽  
Marta Roboredo

<p>Small-sized reservoirs have less capacity for the retention of sediment but are widely distributed in regulated basins. Therefore, small reservoirs collectively impart an important anthropogenic signature to the global sediment-flux, increasing the mean sediment retention when compared with estimates of mean sediment retention of large reservoirs.</p><p>A geochemical study of sediment-associated metal and phosphorus from a small-sized riverine reservoir, located in a mountainous rural region (Vila Real in NE Portugal), was conducted to evaluate the effectiveness of the reservoir as traps for these elements. The contents of metals and P were determined, as well as their spatial distribution pattern and their potential availability by using a four-step sequential extraction procedure for metals and the Chang and Jackson fractionation for P.</p><p>The metal contents in sediments were in the ranges of (µg/g): Cr (22-122); Cu (31-83); Ni (5-71); Pb (49-160); Zn (207-334). All the geochemical phases studied were important in the retention of the metals; within the most labile fractions, the reducible fraction was the most significant. The studied elements can be classed by potential relative mobility: Zn > Pb > Cu > Cr, Ni. The partition of elements contents through the geochemical phases and the balance between contents associated with the most mobile fractions and with the residual fraction suggest an important contribution from lithology to the total contents of Cr and Ni, and a significant contribution of anthropogenic activities to the contents of Cu, Pb, and Zn in the sediments from the reservoir. The analysis of the results on the geochemical partitioning of metals revealed to be important when the Sediment Quality Guidelines (SQGs) are considered. Phosphorus showed contents ranging between 1518-2454 µg/g; most samples revealed the predominance of the Fe-P fraction.</p><p>In general, the sediments of the reservoir showed maximum values of contents of metals above the Threshold Effect Level (TEL, µg/g: Cr-37.3; Cu-35.7; Ni-18; Pb-35; Zn-123). Chromium, Ni, Pb and Zn showed total contents exceeding the values of Probable Effect Level (PEL, µg/g: Cr-90; Cu-197; Ni-36; Pb-91.3; Zn-315). Chromium and Ni showed higher values than the reference ones, but these can be considered relatively unavailable since they are associated with the residual phase. The potentially available and/or total amounts of metals and P in sediments were relatively high, indicating that the quality of bottom sediments accumulated in this small-sized reservoir should be considered in management policies.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Jéssica C. E. Vilhena ◽  
Ana Amorim ◽  
Lourenço Ribeiro ◽  
Bernardo Duarte ◽  
Maíra Pombo

Analyzing the presence and quantifying trace elements is of paramount importance to understand natural environmental processes and monitor the degree of anthropogenic disturbance to mitigate impacts already caused. Here, we aimed to establish a baseline of the trace elements profile and concentrations in sandy sediments of intertidal areas of three Amazonian beaches (Brazil). For each beach, sediments were collected from three different sectors (south, center, and north) and five shoreline distance levels (from the high- to the low-water mark), totalizing 15 samples per beach. The concentration of the different trace elements (Mg, Al, P, S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, Cd, Sn, I, Hg, and Pb) was determined by Total reflection X-ray Fluorescence spectrometry. Sediment was also characterized for its grain size, organic matter, and pH. To assess possible enrichment due to anthropogenic activities we compared trace element levels with the values for the Earth’s crust and calculated pollution indexes: geoaccumulation index (Igeo), ecological risk index (RI), contamination factor (CF), pollution load index (PLI), and sediment quality guideline (SQG), threshold effects level (TEL) and probable effects level (PEL). Individual trace metal concentrations did not vary significantly between beaches, sectors, or sample levels, evidencing a homogeneity of trace elements composition and concentrations across this environment. Igeo indicated 62.2% of the sampling stations uncontaminated, 20.0% from uncontaminated to moderately contaminated, and 4.44% (two sampling stations) strongly contaminated, the same two areas classified as high ecological risk by RI. Most of the sampling points presented low CF. Cadmium and Hg were the only elements that showed moderate to very high values of CF. According to the SQGs, 77.7 and 8.8% of the sampling points presented values above the moderate threshold effect level (SQG-TEL) and probable effect level (SQG-PEL), respectively. All points were classified as non-polluted according to the PLI. Our results show that the three beaches present safe levels of almost of the elements demonstrating the good state of preservation. Most of the indexes classified the sampling points as non-polluted, except for Cd and Hg in a few specific sampling points.


2021 ◽  
Author(s):  
K. Wayne Forsythe ◽  
Chris H. Marvin ◽  
Christine J. Valancius ◽  
James P. Watt ◽  
Joseph M. Aversa ◽  
...  

The Laurentian Great Lakes of North America contain approximately 20% of the earth’s fresh water. Smaller lakes, rivers and channels connect the lakes to the St. Lawrence Seaway, creating an interconnected freshwater and marine ecosystem. The largest delta system in the Great Lakes is located in the northeastern portion of Lake St. Clair. This article focuses on the geovisualization of total mercury pollution from sediment samples that were collected in 1970, 1974 and 2001. To assess contamination patterns, dot maps were created and compared with surfaces that were generated using the kriging spatial interpolation technique. Bathymetry data were utilized in geovisualization procedures to develop three-dimensional representations of the contaminant surfaces. Lake St. Clair generally has higher levels of contamination in deeper parts of the lake, in the dredged shipping route through the lake and in proximity to the main outflow channels through the St. Clair delta. Mercury pollution levels were well above the Probable Effect Level in large portions of the lake in both 1970 and 1974. Lower contaminant concentrations were observed in the 2001 data. Lake-wide spatial distributions are discernable using the kriging technique; however, they are much more apparent when they are geovisualized using bathymetry data.


Author(s):  
Krzysztof Lewandowski ◽  
Maria Witt ◽  
Marta Kobusińska ◽  
Elżbieta Niemirycz

AbstractCombustion processes are considered to be the main source of the dioxin emission in the Baltic region. Pentachlorophenol (PCP) and its derivatives, pentachlorophenyl laurate (PCPL) and sodium pentachlorophenate (NaPCP) are known as precursors of dioxins. The research was conducted to obtain the first data on the concentration of PCDD/Fs and PCP in the bottom sediments of the Port of Gdansk. Toxicity (the Microtox® test) as well as several sediment parameters have been examined.In the surface layer of bottom sediments from the Port of Gdansk, all congeners of PCDD/Fs have been detected using GC-MS/MS. The highest concentration was obtained for OCDD (224.0–271.0 pg g−1 d.w.) and HpCDD (51.0–36.0 pg g−1 d.w.). The content of ΣPCDDs prevailed over ΣPCDFs. This may indicate that anthropogenic pollution from the land-based thermal sources has the strongest impact on the concentration of dioxins in the port sediments. The concentration of 17 dioxin congeners (WHO-TEQ) did not exceed the probable effect level (PEL) of 21.5 pg TEQ g−1 d.w. The concentration of PCP ranged from bellow the LOD (< 0.85 ng g−1 d.w.) to 12.4 ng g−1 d.w.The positive correlation between toxicity and physico-chemical properties of the analyzed bottom sediments confirms that these parameters are important in terms of environment contamination.


Sign in / Sign up

Export Citation Format

Share Document