Computational and fractographic study of the stable growth of low cycle fatigue cracks in the disk of an aircraft engine turbine under complex loading cycles

2021 ◽  
Vol 87 (4) ◽  
pp. 52-60
Author(s):  
N. V. Tumanov ◽  
N. A. Vorobjeva ◽  
A. I. Kalashnikova ◽  
E. P. Kuz’min ◽  
M. A. Lavrentyeva ◽  
...  

The results of a comprehensive computational and experimental study of the kinetics of low-cycle fatigue cracks (LCF) in a turbine disk made of EP741NP granular nickel alloy of an aircraft gas turbine engine under complex loading cycles (CLC) are presented. The configuration of crack fronts was reconstructed using light microscopy. Steps of the blocks of fatigue striations characterizing the crack increment under CLC at the stage of steady crack growth are measured using scanning electron microscopy during microfractographic analysis. The period of LCF crack steady growth is estimated and the reproducibility of the regularities of steady growth is demonstrated which testifies the capability of reliable prediction for LCF crack steady growth. The finite element modeling of the reconstructed crack fronts has been carried out. The values?? of the range of stress intensity factor at each crack front in the area of measuring the pitch of the striation blocks were calculated for the subcycles of complex loading cycles. Using the previously developed physically grounded mathematical model and calculation methodology, forecasting of stable growth of the LCF crack was carried out. The results of forecasting match the data of micro-fractographic analysis unlike the results of LCF crack growth prediction based on Paris law which differ significantly from experimental data.

Author(s):  
Shota Hasunuma ◽  
Takeshi Ogawa

Low cycle fatigue tests were conducted for carbon steel, STS410, low alloy steel, SFVQ1A, and austenitic stainless steel, SUS316NG, which were used for nuclear power plants, in order to investigate the mechanism of fatigue damage when the plants were subjected to huge seismic loads. In these tests, the surface behavior of fatigue crack initiation and growth was observed in detail using cellulose acetate replicas, while the interior behavior was detected in terms of fracture surface morphology developed by multiple two-step strain amplitude variations with periodical surface removals. Fatigue crack growth rates were evaluated by elasto-plastic fracture mechanics approach. For SFVQ1A and SUS316NG, the fracture mechanics approach is available in order to predict the crack growth life from the metallurgical crack initiation size to the final crack length of the specimens. For STS410, numerous small cracks initiated, grew and coalesced each other on the specimen surface under low cycle fatigue regime.


1974 ◽  
Vol 188 (1) ◽  
pp. 321-328 ◽  
Author(s):  
W. J. Evans ◽  
G. P. Tilly

The low-cycle fatigue characteristics of an 11 per cent chromium steel, two nickel alloys and two titanium alloys have been studied in the range 20° to 500°C. For repeated-tension stress tests on all the materials, there was a sharp break in the stress-endurance curve between 103 and 104 cycles. The high stress failures were attributed to cyclic creep contributing to the development of internal cavities. At lower stresses, failures occurred through the growth of fatigue cracks initiated at the material surface. The whole fatigue curve could be represented by an expression developed from linear damage assumptions. Data for different temperatures and types of stress concentration were correlated by expressing stress as a fraction of the static strength. Repeated-tensile strain cycling data were represented on a stress-endurance diagram and it was shown that they correlated with push-pull stress cycles at high stresses and repeated-tension at low stresses. In general, the compressive phase tended to accentuate cyclic creep so that ductile failures occurred at proportionally lower stresses. Changes in frequency from 1 to 100 cycle/min were shown to have no significant effect on low-cycle fatigue behaviour.


Author(s):  
Jean Alain Le Duff ◽  
Andre´ Lefranc¸ois ◽  
Jean Philippe Vernot

In February/March 2007, The NRC issued Regulatory Guide “RG1.207” and Argonne National Laboratory issued NUREG/CR-6909 that is now applicable in the US for evaluations of PWR environmental effects in fatigue analyses of new reactor components. In order to assess the conservativeness of the application of this NUREG report, Low Cycle Fatigue (LCF) tests were performed by AREVA NP on austenitic stainless steel specimens in a PWR environment. The selected material exhibits in air environment a fatigue behavior consistent with the ANL reference “air” mean curve, as published in NUREG/CR-6909. LCF tests in a PWR environment were performed at various strain amplitude levels (± 0.6% or ± 0.3%) for two loading conditions corresponding to a simple or to a complex strain rate history. The simple loading condition is a fully reverse triangle signal (for comparison purposes with tests performed by other laboratories with the same loading conditions) and the complex signal simulates the strain variation for an actual typical PWR thermal transient. In addition, two various surface finish conditions were tested: polished and ground. This paper presents the comparisons of penalty factors, as observed experimentally, with penalty factors evaluated using ANL formulations (considering the strain integral method for complex loading), and on the other, the comparison of the actual fatigue life of the specimen with the fatigue life predicted through the NUREG report application. For the two strain amplitudes of ± 0.6% and ± 0.3%, LCF tests results obtained on austenitic stainless steel specimens in PWR environment with triangle waveforms at constant low strain rates give “Fen” penalty factors close to those estimated using the ANL formulation (NUREG/6909). However, for the lower strain amplitude level and a triangle loading signal, the ANL formulation is pessimistic compared to the AREVA NP test results obtained for polished specimens. Finally, it was observed that constant amplitude LCF test results obtained on ground specimens under complex loading simulating an actual sequence of a cold and hot thermal shock exhibits lower combined environmental and surface finish effects when compared to the penalty factors estimated on the basis of the ANL formulations. It appears that the application of the NUREG/CR-6909 in conjunction with the Fen model proposed by ANL for austenitic stainless steel provides excessive margins, whereas the current ASME approach seems sufficient to cover significant environmental effects for representative loadings and surface finish conditions of reactor components.


2014 ◽  
Vol 891-892 ◽  
pp. 422-427 ◽  
Author(s):  
Rebecka Brommesson ◽  
Magnus Hörnqvist ◽  
Magnus Ekh

During low-cycle fatigue test with smooth bars the number of cycles to initiation is commonly defined from a measured relative drop in aximum load. This criterion cannot be directly related to the actual measure of interest - the crack length. By relating data from controlled crack growth tests under low-cycle fatigue conditions of a high strength Titanium alloy at 350°C and numerical simulation of these tests, it is shown that it is possible to determine the relationship between load drop and crack length, provided that care is taken to consider all relevant aspects of the materials stress-strain response.


Author(s):  
Daowu Zhou ◽  
T. Sriskandarajah ◽  
Heidi Bowlby ◽  
Ove Skorpen

The deformation mechanism in reel-lay of corrosive resistance alloy (CRA) clad/lined pipes can facilitate defect tearing and low cycle fatigue crack growth in the girth welds. Pipe-lay after straightening will subject the CRA welds to high cycle fatigue. The permissible seastate for installation will be governed by failure limit states such as local collapse, wrinkling of the liner, fatigue and fracture. By means of a recently completed offshore project in North Sea, this paper discusses seastate optimisation when installing pipelines with CRA girth welds, from a fatigue and fracture perspective. The additional limiting requirement in CRA welds to maintain CRA liner integrity can lead to significant assessment work since all critical welds shall be examined. AUT scanned defect data were utilised to maximise permissible seastates based on fatigue allowance from a fatigue crack growth calculation. An alternative simplified approach to derive the crack growth based on a superposition method is studied. It enables a straightforward real-time prediction of crack growth and has the potential to be used during the offshore campaign to improve the installation flexibility. Post-installation fracture assessment under more critical seastates is examined for CRA partial over-matching welds. A comparison of CDF between conventional ECA procedure and 3D FE is provided.


Sign in / Sign up

Export Citation Format

Share Document