ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA LACTOCOCCUS LACTIS SUBSP. LACTIS WITH ANTIMICROBIAL PROPERTIES

Author(s):  
L.G. STOYANOVA ◽  
◽  
2014 ◽  
Vol 66 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Amarela Terzic-Vidojevic ◽  
Sanja Mihajlovic ◽  
Gordana Uzelac ◽  
Natasa Golic ◽  
Dj. Fira ◽  
...  

The aim of this study was to identify and characterize the lactic acid bacteria (LAB) of artisanal Golija raw and cooked cows? milk cheeses traditionally manufactured without the addition of starter culture. A total of 188 Gram-positive and catalase-negative isolates of Golija cheeses were obtained from seven samples of different ripening time. Phenotypebased assays as well as rep-PCR and 16S rDNA sequence analysis were undertaken for all 188 Lstrains. The most diverse species were isolated from 20-day-old BGGO8 cheese (Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus casei/paracasei, Lactobacillus sucicola, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. lactis bv. diacetylactis, Enterococcus faecium, Enterococcus durans and Leuconostoc mesenteroides). In other Golija cheeses Lactobacillus reuteri, Lactobacillus curvatus, Lactobacillus rhamnosus, Lactococcus lactis subsp. cremoris, Lactococcus garvieae, Streptococcus thermophilus and Leuconostoc pseudomesenteroides were found. Pronounced antimicrobial properties showed enterococci (13/42) and lactococci (12/31), while the good proteolytic activity demonstrated lactococci (13/31) and lactobacilli (10/29).


1991 ◽  
Vol 54 (3) ◽  
pp. 183-188 ◽  
Author(s):  
JANE M. WENZEL ◽  
ELMER H. MARTH

An agitated medium with internal pH control (IPCM-2) was inoculated to contain Listeria monocytogenes (strain V7, Scott A or California) at ca. 103 CFU/ml and Streptococcus cremoris (Lactococcus lactis subsp. cremoris) or Streptococcus lactis (Lactococcus lactis subsp. lactis) at 0.25 or 1.0% The inoculated medium was incubated with shaking in a waterbath at 30°C for 30 h. L. monocytogenes and lactic acid bacteria were enumerated and pH was determined at appropriate intervals. The area on a figure between curves for the control and treatment and designated as the area of inhibition (AI) was calculated and used to quantify inhibition of each strain of L. monocytogenes for a particular set of conditions in IPCM-2. Statistical analysis of AI values calculated from data obtained at 6, 24, and 30 h of incubation revealed no significant (p < 0.05) difference in inhibition among the three strains of L. monocytogenes for each type of lactic streptococcus present. Streptococcus cremoris was significantly (0.01 < p < 0.05) more inhibitory to all three strains of L. monocytogenes than was S. lactis at 24 and 30 h of incubation. IPCM-2 is considered ready for use at a pH of 5.4 or less, which was reached between 12 and 15 h of incubation in samples containing 0.25 or 1.0% S. cremoris. Populations of L. monocytogenes in such samples were ca. 104 to 106 CFU/ml regardless of strain of Listeria or percentage of S. cremoris added as inoculum. In samples initially containing 0.25 or 1.0% S. lactis, pH 5.4 was not reached until after 18–24 h of incubation. At this point all three strains of L. monocytogenes had grown to ca. 105 CFU/ml regardless of percentage of S. lactis added as inoculum. Despite the inhibition seen, substantial numbers of the pathogen were present when the medium was ready for use.


2021 ◽  
Vol 6 (1) ◽  
pp. 15
Author(s):  
Maria Hesty Febriana ◽  
Ekawati Purwijantiningsih ◽  
Pramana Yuda

Gatot is a traditional food from fermented cassava. Lactic acid bacteria (LAB) can be found in fermented cassava food, gatot. Lactic acid bacteria can produce an antimicrobial compound for inhibiting pathogen microorganism. The aim of this research were isolation and identification LAB from gatot and antimicrobial activity test against Bacillus cereus and Aspergillus flavus. Three isolates from raw gatot and three isolates from cooked gatot used in this research. Isolation of LAB was conducted using pour plate method, purification is conducted by streak plate method, the antimicrobial test was conducted by agar well diffusion and molecular identification was conducted by PCR colony method using LABFw and R16RDNA-1492bac primer. Lactic acid bacteria from cooked gatot identified as Enterococcus sp. FTBUAJY04, Enterococcus sp. FTBUAJY05, Enterococcus sp. FTBUAJY06, while LAB from raw gatot identified as Lactococcus lactis strain FTBUAJY01, Lactococcus lactis strain FTBUAJY02 dan Lactococcus lactis strain FTBUAJY03. The results obtained from the inhibition zone test showed that all isolates were able to inhibit the growth of B. cereus and A. flavus.  The greatest inhibition zone against B. cereus was shown by LAB Gt5 supernatant or L. lactis supernatant strain FTBUAJY02 of 1.87 ± 0.67 cm2, while the results of the greatest inhibition zone against A. flavus was LAB Gt6 supernatant or L. lactis supernatant strain FTBUAJY03 of 3.83 ± 0.73 cm2.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1448
Author(s):  
Marina Ivanovic ◽  
Nemanja Mirkovic ◽  
Milica Mirkovic ◽  
Jelena Miocinovic ◽  
Ana Radulovic ◽  
...  

Nowadays, consumers are interested in cheese produced without chemical additives or high-temperature treatments, among which, protective lactic acid bacteria (LAB) cultures could play a major role. In this study, the aims were to isolate, identify and characterize antilisterial LAB from traditionally produced cheese, and utilize suitable LAB in cheese production. Among 200 isolated LAB colonies, isolate PFMI565, with the strongest antilisterial activity, was identified as Enterococcus durans. E. durans PFMI565 was sensitive to clinically important antibiotics (erytromicin, tetracycline, kanamycin, penicillin, vancomycin) and had low acidifying activity in milk. E. durans PFMI565 and the previously isolated bacteriocin producer, Lactococcus lactis subsp. lactis BGBU1–4, were tested for their capability to control Listeria monocytogenes in experimentally contaminated ultrafiltered (UF) cheeses during 35 days of storage at 4 °C. The greatest reductions of L. monocytogenes numbers were achieved in UF cheese made with L. lactis subsp. lactis BGBU1–4 or with the combination of L. lactis subsp. lactis BGBU1–4 and E. durans PFMI565. This study underlines the potential application of E. durans PFMI565 and L. lactis subsp. lactis BGBU1–4 in bio-control of L. monocytogenes in UF cheese.


Author(s):  
Vasilica BARBU ◽  
Catalin IANCU ◽  
Corina NEAGU

Lactic acid bacteria strains were isolated from rye epiphyte microbiota: one strain of Lactobacillus sp. (UGAL1), and one strain of Streptococcus sp. (UGAL2). Identification of the LAB strains isolated from rye microbiota was made with API 50CH kit and with API 20 STREP kit (BioMerieux). Using the API 50CHL we have confirmed that the UGAL1 is a member of the genus Weissella with 82% probability. The API 20 STREP allowed identification of the UGAL2 as being Lactococcus lactis ssp lactis, with 85% probability.


1995 ◽  
Vol 58 (3) ◽  
pp. 316-318 ◽  
Author(s):  
JOHN U. McGREGOR ◽  
SANDRA M. TRAYLOR ◽  
RONALD H. GOUGH ◽  
STEPHANIE HAZLETT ◽  
KENNY BIRD

The ability of lactic cultures to grow on Petrifilm™ SM plates was studied. Frozen yogurt mix was analyzed microbiologically by plating on TOE, LBS, M17 and Petrifilm™ SM. Plates were incubated aerobically in a Gas-Pak System and under a CO2 environment. Also, Lactobacillus bulgaricus, Streptococcus thermophilus, Lactococcus lactis subsp. diacetylactis, and Leuconostoc cremoris were isolated from yogurt and buttermilk samples for study. Isolated cultures were grown in nutrient broth and plated on Petrifilm™ SM and M17 agar. Plates were incubated aerobically and in a Gas-Pak system. Petrifilm™ SM plates performed as well or better than the M17 agar in assaying lactic growth with the exception of Streptococcus thermophilus culture in an aerobic environment. Petrifilm™ SM plates show promise as a method for enumerating viable lactic cultures if incubated in a reduced oxygen environment.


2020 ◽  
Vol 8 (10) ◽  
pp. 1528
Author(s):  
Mathilde Lebas ◽  
Peggy Garault ◽  
Daniel Carrillo ◽  
Francisco M. Codoñer ◽  
Muriel Derrien

Interest in preventive or therapeutic strategies targeting gut microbiota is increasing. Such strategies may involve the direct replenishment of the gut microbiota with single strains or strain mixtures, or the manipulation of strain abundance through dietary intervention, including lactic acid bacteria. A few candidate species associated with health benefits have been identified, including Faecalibacterium prausnitzii. Given its growth requirements, modulation of this bacterium has not been extensively studied. In this investigation, we explored the capacity of cell-free supernatants of different Lactobacillus, Streptococcus, Lactococcus, and Bifidobacterium strains to stimulate the growth of F. prausnitzii A2-165. Modulation by four strains with the greatest capacity to stimulate growth or delay lysis, Lactococcus lactis subsp. lactis CNCM I-1631, Lactococcus lactis subsp. cremoris CNCM I-3558, Lactobacillus paracasei CNCM I-3689, and Streptococcus thermophilus CNCM I-3862, was further characterized by transcriptomics. The response of F. prausnitzii to cell-free supernatants from these four strains revealed several shared characteristics, in particular, upregulation of carbohydrate metabolism and cell wall-related genes and downregulation of replication and mobilome genes. Overall, this study suggests differential responses of F. prausnitzii to metabolites produced by different strains, providing protection against cell death, with an increase in peptidoglycan levels for cell wall formation, and reduced cell mobilome activity.


2008 ◽  
Vol 71 (10) ◽  
pp. 2024-2029 ◽  
Author(s):  
PONGSAK RATTANACHAIKUNSOPON ◽  
PARICHAT PHUMKHACHORN

Lactic acid bacteria isolated from various Thai fermented foods were screened for the presence of nisin gene by using PCR with primers specific to nisin A structural gene. Only one strain, Lactococcus lactis subsp. lactis TFF 221, isolated from kung jom, a traditional shrimp paste, was found to carry a nisin gene. The TFF 221 nisin had antimicrobial activity against not only closely related lactic acid bacteria but also some foodborne pathogens. It was heat stable and inactivated by α-chymotrypsin and proteinase K. Some characteristics of TFF 221 nisin were found to be very similar to those of nisin A produced by Lactococcus lactis subsp. lactis NCDO 2111. Both of them had the same antimicrobial spectrum and MICs against all indicator bacteria. However, when assayed with indicator organisms, in all cases the TFF 221 nisin produced larger zones of inhibition in agar diffusion assays than the nisin A did. Sequencing of the TFF 221 nisin gene showed that it was the natural nisin variant, nisin Z, as indicated by the substitution of asparagine residue instead of histidine at position 27. The nisin determinant in strain TFF 221 was found to be located on a conjugative transposon residing in the chromosome. The ability of the nisin produced by L. lactis subsp. lactis TFF 221 to inhibit a wide range of foodborne pathogens may be useful in improving the food safety of the fermented product, especially in the Thai environment, which suffers from perennial problems of poor food hygiene.


Sign in / Sign up

Export Citation Format

Share Document