ECOLOGICAL ROLE OF WATER–SOLUBLE ORGANIC SUBSTANCES (WOS) IN HUMUS FORMATION AND THE MIGRATION OF SUBSTANCES IN THE TAIGA REGION SOILS

Author(s):  
I.M. YASHIN ◽  
◽  
R.A. ATENBEKOV ◽  
V.A. CHERNIKOV ◽  
I.I. VASENEV
2017 ◽  
Vol 19 (1) ◽  
pp. 5-24 ◽  
Author(s):  
E. I. Shnyukova ◽  
E. K. Zolotareva
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Ramona B. J. Ihlenburg ◽  
Anne-Catherine Lehnen ◽  
Joachim Koetz ◽  
Andreas Taubert

New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.


Author(s):  
Thomas Glonek

AbstractHow life began still eludes science life, the initial progenote in the context presented herein, being a chemical aggregate of primordial inorganic and organic molecules capable of self-replication and evolution into ever increasingly complex forms and functions.Presented is a hypothesis that a mineral scaffold generated by geological processes and containing polymerized phosphate units was present in primordial seas that provided the initiating factor responsible for the sequestration and organization of primordial life’s constituents. Unlike previous hypotheses proposing phosphates as the essential initiating factor, the key phosphate described here is not a polynucleotide or just any condensed phosphate but a large (in the range of at least 1 kilo-phosphate subunits), water soluble, cyclic metaphosphate, which is a closed loop chain of polymerized inorganic phosphate residues containing only phosphate middle groups. The chain forms an intrinsic 4-phosphate helix analogous to its structure in Na Kurrol’s salt, and as with DNA, very large metaphosphates may fold into hairpin structures. Using a Holliday-junction-like scrambling mechanism, also analogous to DNA, rings may be manipulated (increased, decreased, exchanged) easily with little to no need for additional energy, the reaction being essentially an isomerization.A literature review is presented describing findings that support the above hypothesis. Reviewed is condensed phosphate inorganic chemistry including its geological origins, biological occurrence, enzymes and their genetics through eukaryotes, polyphosphate functions, circular polynucleotides and the role of the Holliday junction, previous biogenesis hypotheses, and an Eoarchean Era timeline.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 274
Author(s):  
Alexander V. Smolin ◽  
Мikhail N. Mikhailov ◽  
Aleksey F. Gadzaov ◽  
Leonid M. Kustov

The problem of identifying correlations between catalytic and electrocatalytic processes is one of the fundamental problems of catalysis among “simple” organic substances, and the oxidation of CO and rCO2 is of great interest, since CO and CO2 are considered in pairs both during catalytic and electrocatalytic transformations. In the case of electrocatalysis, this analysis is important in the study of fuel cells. In this paper, we studied the correlation between the oxidation of reduced forms of CO2 (rCO2) under potentiodynamic-galvanoctatic electrochemical and open-circuit conditions of measurements on polycrystalline (pc)Pt in H2CO3. Periodic oscillations are revealed at the oxidation of Had and rCO2 on (pc)Pt. Quantum chemical calculations were carried out on the Pt13 cluster in order to identify the mechanisms of the rCO2 oxidation reaction. The correspondence in the energy parameters of the oxidation process of rCO2 under open-circuit conditions and electrochemical conditions is shown. The preliminary analysis of the system using density functional (DFT) calculations is carried out and the most stable systems that are based on Pt13 are found, namely rOH-Pt13-(CO)n, rOH-Pt13-(COH) and rOH-Pt13-(rCOOH). OH• species was chosen as the most likely candidate for the role of the oxidant for rCO2. Preliminary calculations for the expected reactions were carried out, and the optimal PES is revealed.


Author(s):  
Agnieszka Nosal-Wiercińska ◽  
Marlena Martyna ◽  
Sławomira Skrzypek ◽  
Anna Szabelska ◽  
Małgorzata Wiśniewska

AbstractThe paper discusses the electroreduction of Bi(III) ions in the aspect of expanding the “cap-pair” effect.The “cap-pair” rule is associated with the acceleration of the electrode’s processes by organic substances. The interpretation of the “cap-pair” effect mechanism was expanded to include the effect of supporting electrolyte concentration on the acceleration process and the type of electrochemical active as well as used protonated organic substances. It has also been shown that the phenomena occurring at the electrode/solution interface can influence a change in the dynamics of the electrode’s process according to the “cap-pair” rule.


1983 ◽  
Vol 61 (7) ◽  
pp. 688-691 ◽  
Author(s):  
J. J. Liepnieks ◽  
P. Stoskopf ◽  
E. A. Carrey ◽  
C. Prosser ◽  
R. M. Epand

Glucagon can form water-soluble complexes with phospholipids. The incorporation of glucagon into these lipoprotein particles reduces the biological activity of the hormone. The effect is observed only at temperatures below the phase transition temperature of the phospholipid and results in a decreased stimulation of the adenylate cyclase of rat liver plasma membranes by the lipoprotein complex as compared with the hormone in free solution. Two- to five-fold higher concentrations of glucagon are required for half-maximal stimulation of adenylate cyclase when the hormone is complexed with dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, or bovine brain sphingomyelin. A possible role of lipoprotein-associated hormones in the development of insulin resistance is discussed.


Sign in / Sign up

Export Citation Format

Share Document