MODERNIZATION OF POWER SUPPLY SYSTEMS OF RURAL CONSUMERS BY INTRODUCING DISTRIBUTED GENERATION

Author(s):  
ANDREY A. SUKHOV ◽  
◽  
NATALIA A. STUSHKINA
2021 ◽  
Vol 1 (42) ◽  
pp. 8-15
Author(s):  
Aleksandr Vinogradov ◽  
◽  
Anatoliy Seyfullin

The construction of intelligent power supply systems for rural consumers (microgrids) is a promising concept for the development of the energy infrastructure of agricultural facilities. In the process of designing and operating micro-networks, a large number of technical, organizational and legal issues arise, the correct answer to which affects on the reliability, quality and efficiency of electricity supply to agricultural facilities. The analysis of the documentation regulating these processes is of particular relevance. (Research purpose) The research purpose is in analyzing the documentation regulating the construction and operation of intelligent power supply microgrid systems for rural consumers. (Materials and methods) The article reviews regulatory documents in the field of regulation of the electric power industry, distributed generation facilities, renewable energy sources, and the functioning of retail electricity markets. Authors used the method of system analysis, methods of comparisons and analogies, and expert assessments. (Results and discussion) The article presents the issues of functioning of micro-networks of rural consumers as part of the power system, in retail electricity markets; implementation of technological connection and integration of micro- networks into distribution networks. Authors evaluated the regulatory and technical documents regulating the general technical requirements for the design and operation of micro-networks. Domestic and foreign standards for the connection and parallel operation of micro-networks with distribution networks as part of the power system and special documents on micro-networks has been studied. (Conclusions) The article proposes measures for the development of GOST R based on the European IEC TS 62898-1 «Microgrids», harmonized with the requirements of Russian standards, taking into account the features of the Russian electric power industry and agriculture. The article notes the need to make changes to the Russian network codes to ensure the integration of rural micro-networks. The measures of state support aimed at stimulating the spread of intelligent power supply systems for rural consumers were cited.


2019 ◽  
Vol 139 ◽  
pp. 01032
Author(s):  
Boris Papkov ◽  
Vladimir Osokin

Development and operation of modern power supply systems of consumers which are the part of distributed generation (DG) systems with their communication with electric power system (EPS) and renewable energy sources (RES) demand changes in estimation of their reliability indicators on the basis of corresponding mathematical apparatus. It is shown that DG systems refer to structures with several overlapping zones of action, which determines their peculiarities, which are represented by some integral characteristic - efficiency of operation, which characterizes the degree of expediency of use of the DG system in different modes. The approach based on evaluation of effectiveness of such systems is offered. Examples of calculation of relatively simple structures of DG systems performing several tasks simultaneously are given.


2020 ◽  
Vol 178 ◽  
pp. 01077
Author(s):  
A.N. Alyunov ◽  
A.Yu Belyanin ◽  
A.E. Nemirovsky ◽  
D.A. Zaripova

This article considers an urgent task of using autonomous sources for power supply systems of industrial enterprises of small and medium-sized production. The efficiency of choosing the time of their switching-on in peak hours of power system in order to reduce the cost of electricity is shown on the example of diesel generators.


2021 ◽  
Vol 25 (1) ◽  
pp. 31-43
Author(s):  
Yu. N. Bulatov ◽  
A. V. Kryukov ◽  
К. V. Suslov ◽  
A. V. Cherepanov

The article aims to develop a methodology to ensure timely determination of the margins of static aperiodic stability in power supply systems, at the nodal points of which distributed generation units are installed. The authors used mathematical methods and algorithms based on the application of limiting regime equations. Transitional processes were analysed for various points in the space of controlled mode parameters according to the simulation modelling in Matlab using the Simulink and SimPowerSystems packages. On the basis of the obtained results, an effective technique for analysing stability margins in electrical networks with distributed generation units was implemented. This method is applicable in design problems, as well as in operational and emergency control. The conducted theoretical analysis and computer modelling showed the effectiveness of the proposed methodology for calculating stability margins; the nondegeneracy of the Jacobi matrix of limiting regime equations at the solution point ensures the guaranteed reliability of the results. It was shown that an alternative approach to solving the problem of timely determination of aperiodic stability margins can be implemented on the basis of limiting regime equation with increased nonlinearity. Dynamic modelling of an electrical network with distributed generation units confirmed the correctness of determining the stability margins calculated using limiting regime equations. The developed technique can be recommended for practical use in the design of power supply systems or in operational control of synchronous generators. In particular, the presented methodology can be used to implement a multi-agent emergency control system for distributed generation installations located in generalpurpose distribution electrical networks. 


2021 ◽  
Vol 288 ◽  
pp. 01108
Author(s):  
Alexander V. Vinogradov ◽  
Anatoly Y. Seyfullin ◽  
Alina V. Vinogradova ◽  
Vadim E. Bolshev ◽  
Alexey V. Bukreev ◽  
...  

In this article, the authors consider the materials of research on the construction and operation of intelligent power supply systems with a nominal voltage of up to 1000 V, containing distributed generation facilities. The author’s approach to the construction of microgrids based on multi-contact switching systems is proposed. The similarities and differences of the presented concepts are determined. The main problematic issues that arise in the process of implementing projects for the construction of microgrids and the management of electric power modes of operation are formulated. The ways of solving the problems related to the management of the modes of operation of microgrids are proposed.


2020 ◽  
Vol 24 (5) ◽  
pp. 1041-1052
Author(s):  
Andrey Kryukov ◽  
◽  
Aleksandr Cherepanov ◽  
Irina Lyubchenko ◽  
◽  
...  

The purpose of the paper is to develop a methodology for modeling railway power supply systems equipped with a set of devices implemented on the base of smart grid technologies. The research is carried out using the Fazonord software package designed for modeling the modes of railway power supply systems in phase coordinates. The calculation model is implemented for the power supply system of a two-track section with five traction substations. The results obtained show that reliable and high-quality power supply of train traction and non-traction consumers can be ensured on the basis of the integrated use of active Smart Grid elements, such as a phase number converter, active harmonic conditioner, controlled reactive power source, and a distributed generation unit. Computer simulation allows to establish that in the absence of reactive power sources there are noticeable voltage fluctuations on 10 kV buses of non-traction consumers; the asymmetry is approaching the limit of normally acceptable values; disabling of the active filter results in the increase of the total harmonic coefficient of voltages up to 16%; if the entire complex of active devices is available, the high quality of electrical energy is achieved; the phase number converter is robust and features low sensitivity to the errors in parameter setting; voltage deviations caused by the limited variation range of reactive power in the reactive power source are short-term and do not exceed the values acceptable in practice. Thus, on the basis of Smart Grid technologies, distributed generation units can be connected directly to the traction network using a phase number conversion device formed according to the reciprocal Steinmetz circuit. Elimination of harmonic distortions created by rectifier electric locomotives is carried out by means of an active conditioner of higher harmonics. A controlled reactive power source can be used to maintain voltage levels.


Sign in / Sign up

Export Citation Format

Share Document