scholarly journals Timely determination of static stability margins in power supply systems equipped with distributed generation installations

2021 ◽  
Vol 25 (1) ◽  
pp. 31-43
Author(s):  
Yu. N. Bulatov ◽  
A. V. Kryukov ◽  
К. V. Suslov ◽  
A. V. Cherepanov

The article aims to develop a methodology to ensure timely determination of the margins of static aperiodic stability in power supply systems, at the nodal points of which distributed generation units are installed. The authors used mathematical methods and algorithms based on the application of limiting regime equations. Transitional processes were analysed for various points in the space of controlled mode parameters according to the simulation modelling in Matlab using the Simulink and SimPowerSystems packages. On the basis of the obtained results, an effective technique for analysing stability margins in electrical networks with distributed generation units was implemented. This method is applicable in design problems, as well as in operational and emergency control. The conducted theoretical analysis and computer modelling showed the effectiveness of the proposed methodology for calculating stability margins; the nondegeneracy of the Jacobi matrix of limiting regime equations at the solution point ensures the guaranteed reliability of the results. It was shown that an alternative approach to solving the problem of timely determination of aperiodic stability margins can be implemented on the basis of limiting regime equation with increased nonlinearity. Dynamic modelling of an electrical network with distributed generation units confirmed the correctness of determining the stability margins calculated using limiting regime equations. The developed technique can be recommended for practical use in the design of power supply systems or in operational control of synchronous generators. In particular, the presented methodology can be used to implement a multi-agent emergency control system for distributed generation installations located in generalpurpose distribution electrical networks. 

2018 ◽  
Vol 58 ◽  
pp. 01006 ◽  
Author(s):  
Bulatov Yuri ◽  
Kryukov Andrey

The article present results of studies aimed at emergency control methods development in power supply systems equipped with distributed generation plants. The main purpose of emergency control is ensuring postemergency mode dead-beat stability and high quality of dynamic transitions for electrical network load-shedding. Control actions were formed by changing the vector of controlled parameters along a path corresponding to the shortest distance to the hypersurface of the limit modes. The dynamic processes quality when implementing the control actions was ensured based on the special settings of excitation and frequency automatic regulators. Based on computer-aided modelling, it is shown that the effective in-troduction of a postemergency mode to the stability region can be performed based on generalized equations of the limit loads while using the start algorithm ensuring mode’s entering the stability region’s neighboring boundary. The application of the fuzzy control algorithms for tuning regulators allows formation of a qualitative dynamic transition while load-shedding distributed generation plants in the postemergency mode.


2021 ◽  
pp. 75-86
Author(s):  
A. Gai ◽  
◽  
V. Gulevich ◽  

Today, the electricity supplier is not able to declare the possible level of quality of electricity supply, and the consumer simply does not have the opportunity to buy such "high-quality" electricity. In such conditions, a differentiated approach to tariff formation is inevitable, which has been implemented in practice today, albeit in its infancy. Further improvement of the tariff-forming mechanism is impossible without creating a "flexible" dependence of the tariff on the quality indicators of the consumer's power supply. Quality indicators, in turn, are based, on the one hand, on the methods and approaches for their determination, and on the other, on statistically reliable data on the elements that make up the equipment in the "generation-consumer" chain. In recent years, there has been a tendency to change the concept of development of the electric power industry, since preference is given to the development of sources of distributed generation. Distributed generation is understood as a source of electrical energy directly connected to the distribution electrical network or connected to it by consumers. Ensuring the socio-economic stability of society and a decent quality of life for the population largely depends on the reliability and efficiency of the functioning of the infrastructure for the supply of fuel and energy resources, in particular, electricity. Excessive losses of electricity during its production, transportation and distribution, as well as an unacceptable level of harmful emissions into the atmosphere, are the cause of interruptions in power supply to consumers and even the threat of systemic accidents in the United Energy System (UPS) of the country. The introduction of alternative energy sources in electric power systems, in addition to reducing the harmful impact on the environment and solving the problems associated with waste pollution during electric power generation, will reduce the use of natural resources and relieve the backbone and distribution power lines. As part of the scientific search, an approach was proposed, which is the basis for calculations to determine the optimal installation locations for sources of distributed generation of an average overhead line. The results obtained are presented in the framework of a joint technical meeting of leading specialists of operating enterprises, the customer and the staff of the Department of Power Supply named after V.M. Sinkova NULES of Ukraine.


2019 ◽  
Vol 139 ◽  
pp. 01078 ◽  
Author(s):  
A.G. Saidkhodjaev ◽  
A.M. Najimova ◽  
A.K. Bijanov

In this article, we propose a new method for determining the maximum load of electric consumers in urban electric networks, which differs from existing methods in more accurate and reliable determination of the maximum loads. Based on the determination of the maximum loads of the objects of urban electrical networks, it is concluded that the proposed methods are determined by high accuracy and minor errors.


2019 ◽  
pp. 27-32
Author(s):  
E. Volodarskyi ◽  
A. Voloshko

The saturation of power supply systems with nonlinear and powerful sources both from sources and consumers of electricity has led to the fact that signals in the network become non-stationary, nonlinear, and with significant frequency fluctuations. The purpose of the work is to reduce the methodological error of determining the parameters of the mode of electricity consumption due to the frequency deviation in the electrical network. The article proposes methods based on the determination of the frequency deviation value and the introduction of correction coefficients (for example, the calculation of active power and voltage in the electric network). The proposed methods are applied to both sinusoidal and non-sinusoidal signal forms. The results show that these methods have high accuracy, even with signals containing harmonics, and for a frequency deviating from the nominal value.


2014 ◽  
Vol 1008-1009 ◽  
pp. 815-818 ◽  
Author(s):  
Dmitrii Chechushkov ◽  
Yakov Novikov

In this paper, a new approach to emergency management systems supply. Method aims to increase the reliability of power supply to consumers. The mathematical model of assessing the impact of distributed generation sources (DP) to improve the reliability of power supply, as an algorithm to find the optimal combination of DG used genetic algorithm. The results of experimental calculations and comparative analysis of the algorithm is show.


2020 ◽  
Vol 224 ◽  
pp. 02004
Author(s):  
Yu N Bulatov ◽  
A V Kryukov ◽  
K V Suslov ◽  
A V Cherepanov

The wide use of distributed generation (DG) technologies in electrical energy systems (EES) requires development of new control algorithms in normal, emergency and postemergency modes. The issues of determining the static aperiodic stability (SAS) margin in EES equipped with DG plants are of particular relevance. These plants can be removed from the consumption centers, which can lead to SAS reserves depletion. The article presents the results of studies aimed at the developing SAS reserves express calculation methods in EES equipped with DG plants. An effective technique to determine stability margins was proposed based on one of the modifications of limiting modes equations. The results of determining SAS for an electrical network with distributed generation plants are presented. Additionally, the simulation of transient processes in the studied EES for various points in the space of the mode’s controlled parameters has been carried out in the Matlab system.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Yanrenthung Odyuo ◽  
Dipu Sarkar ◽  
Lilika Sumi

Abstract The development and planning of optimal network reconfiguration strategies for electrical networks is greatly improved with proper application of graph theory techniques. This paper investigates the application of Kruskal's maximal spanning tree algorithm in finding the optimal radial networks for different loading scenarios from an interconnected meshed electrical network integrated with distributed generation (DG). The work is done with an objective to assess the prowess of Kruskal's algorithm to compute, obtain or derive an optimal radial network (optimal maximal spanning tree) that gives improved voltage stability and highest loss minimization from among all the possible radial networks obtainable from the DG-integrated mesh network for different time-varying loading scenarios. The proposed technique has been demonstrated on a multiple test systems considering time-varying load levels to investigate the performance and effectiveness of the suggested method. For interconnected electrical networks with the presence of distributed generation, it was found that application of Kruskal's algorithm quickly computes optimal radial configurations that gives the least amount of power losses and better voltage stability even under varying load conditions. Article Highlights Investigated network reconfiguration strategies for electrical networks with the presence of Distributed Generation for time-varying loading conditions. Investigated the application of graph theory techniques in electrical networks for developing and planning reconfiguration strategies. Applied Kruskal’s maximal spanning tree algorithm to obtain the optimal radial electrical networks for different loading scenarios from DG-integrated meshed electrical network.


2020 ◽  
Vol 23 (2) ◽  
pp. 52-58
Author(s):  
S. SKRYPNYK ◽  

Our world with its high technologies has long been deeply dependent on the quality of electricity supply. In most countries of the world there are national power grids that combine the entire set of generating capacity and loads. This network provides the operation of household appliances, lighting, heating, refrigeration, air conditioning and transport, as well as the functioning of the state apparatus, industry, finance, trade, health services and utilities across the country. Without this utility, namely electricity, the modern world simply could not live at its current pace. Sophisticated technological improvements are firmly rooted in our lives and workplaces, and with the advent of e-commerce began the process of continuous transformation of the way individuals interact with the rest of the world. But with the achievement of intelligent technologies, an uninterrupted power supply is required, the parameters of which exactly meet the established standards. These standards maintain our energy security and create a reliable power system, that is maintaining the system in a trouble-free state. Overvoltage is the deviation of the rated voltage from the value of the corresponding quality standard (frequency, sinusoidal voltage and compliance of harmonics). Overvoltage in terms of fire hazard is one of the most dangerous emergency modes of electrical equipment, which causes conditions that in most cases are sufficient for the occurrence of fire hazards (exceeding the allowable voltage leads to disruption of normal operation or possible ignition). Against the background of deteriorating engineering systems, increased power consumption and poor maintenance, power supply of electrical installations, the main causes of overvoltage in electrical networks are thunderstorms (atmospheric overvoltage), switching switches, uneven phase load in electrical networks, etc. The physical picture of internal overvoltage is due to oscillatory transients from the initial to the established voltage distributions in the conductive sections due to the different situation in the electrical circuit. In the conditions of operation of electric networks planned, mode or emergency situations are possible. Therefore, the ranges of overvoltage are determined by the range from several hundred volts to tens and hundreds of kilovolts, and depend on the types of overvoltage. Atmospheric overvoltage is considered to be one of the most dangerous types of emergency modes of operation of the electrical network. This overvoltage occurs as a result of lightning discharge during precipitation by concentrating electricity on the surface of the object, the introduction of potential through engineering networks and


Sign in / Sign up

Export Citation Format

Share Document