A general hydrogen bonding definition based on three-dimensional spatial distribution functions and its extension to quantitative structural analysis of solutions and general intermolecular bonds

2019 ◽  
Vol 281 ◽  
pp. 225-235 ◽  
Author(s):  
Jan Dočkal ◽  
Martin Svoboda ◽  
Martin Lísal ◽  
Filip Moučka
2019 ◽  
Vol 75 (10) ◽  
pp. 1344-1352
Author(s):  
Yu-Kun Lu ◽  
Ya-Ping Li ◽  
Ling-Yu Yang ◽  
Wen-Hong Wang ◽  
Yuan Pan ◽  
...  

A novel modified polyoxometalate, {PMo12O40[Cu(2,2′-bpy)]}[Cu(2,2′-bpy)(en)(H2O)]2 [2,2′-bpy is 2,2′-bipyridyl (C10H8N2) and en is ethylenediamine (C2H8N2)], has been synthesized hydrothermally and structurally characterized by elemental analysis, TG, IR, XPS and single-crystal X-ray diffraction. The structural analysis reveals that the compound contains the reduced Keggin polyanion [PMo12O40]6− as the parent unit, which is monocapped by [Cu(2,2′-bpy)]2+ fragments via four bridging O atoms on an {Mo4O4} pit and bi-supported by two [Cu(2,2′-bpy)(en)(H2O)]2+ coordination cations simultaneously. There exist strong intramolecular π–π stacking between the capping and supporting units, which play a stabilizing role during the crystallization of the compound. Adjacent POM clusters are further aggregated to form a three-dimensional supramolecular network through noncovalent forces, hydrogen bonding and π–π stacking interactions. In addition, the photocatalytic properties were investigated in detail, and the results indicated that the compound can be used as a photocatalyst towards the decomposition of the organic pollutant methylene blue (MB).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Michela Quadrini

Abstract RNA molecules play crucial roles in various biological processes. Their three-dimensional configurations determine the functions and, in turn, influences the interaction with other molecules. RNAs and their interaction structures, the so-called RNA–RNA interactions, can be abstracted in terms of secondary structures, i.e., a list of the nucleotide bases paired by hydrogen bonding within its nucleotide sequence. Each secondary structure, in turn, can be abstracted into cores and shadows. Both are determined by collapsing nucleotides and arcs properly. We formalize all of these abstractions as arc diagrams, whose arcs determine loops. A secondary structure, represented by an arc diagram, is pseudoknot-free if its arc diagram does not present any crossing among arcs otherwise, it is said pseudoknotted. In this study, we face the problem of identifying a given structural pattern into secondary structures or the associated cores or shadow of both RNAs and RNA–RNA interactions, characterized by arbitrary pseudoknots. These abstractions are mapped into a matrix, whose elements represent the relations among loops. Therefore, we face the problem of taking advantage of matrices and submatrices. The algorithms, implemented in Python, work in polynomial time. We test our approach on a set of 16S ribosomal RNAs with inhibitors of Thermus thermophilus, and we quantify the structural effect of the inhibitors.


2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


2015 ◽  
Vol 48 (3) ◽  
pp. 786-796 ◽  
Author(s):  
Maheswar Nayak ◽  
P. C. Pradhan ◽  
G. S. Lodha

Element-specific structural analysis at the buried interface of a low electron density contrast system is important in many applied fields. The analysis of nanoscaled Si/B4C buried interfaces is demonstrated using resonant X-ray reflectivity. This technique combines information about spatial modulations of charges provided by scattering, which is further enhanced near the resonance, with the sensitivity to electronic structure provided by spectroscopy. Si/B4C thin-film structures are studied by varying the position of B4C in Si layers. Measured values of near-edge optical properties are correlated with the resonant reflectivity profile to quantify the element-specific composition. It is observed that, although Si/B4C forms a smooth interface, there are chemical changes in the sputtered B4C layer. Nondestructive quantification of the chemical changes and the spatial distribution of the constituents is reported.


2013 ◽  
Vol 24 (6) ◽  
pp. 1579-1588 ◽  
Author(s):  
Angel Merchán-Pérez ◽  
José-Rodrigo Rodríguez ◽  
Santiago González ◽  
Víctor Robles ◽  
Javier DeFelipe ◽  
...  

1998 ◽  
Vol 120 (2) ◽  
pp. 77-84 ◽  
Author(s):  
I. V. Polyakov ◽  
I. Yu. Kulakov ◽  
S. A. Kolesov ◽  
N. Eu. Dmitriev ◽  
R. S. Pritchard ◽  
...  

A fully prognostic coupled ice-ocean model is described. The ice model is based on the elastic-plastic constitutive law with ice mass and compactness described by distribution functions. The ice thermodynamics model is applied individually to each ice thickness category. Advection of the ice partial mass and concentrations is parameterized by a fourth-order algorithm that conserves monotonicity of the solution. The ocean is described as a three-dimensional time-dependent baroclinic model with free surface. The coupled model is applied to establish the Arctic Ocean seasonal climatology using fully prognostic models for ice and ocean. Results reflect the importance of the ice melting/freezing in the formation of the thermohaline structure of the upper ocean layer.


1966 ◽  
Vol 39 (4) ◽  
pp. 1008-1018
Author(s):  
K. P. Perry ◽  
W. J. Jackson ◽  
J. R. Caldwell

Abstract Polycarbonate elastomers were prepared by the addition of phosgene to a pyridine solution of poly (tetramethylene ether) glycol and bisphenols containing norbornane-type groups. These elastomers do not contain the classical “tie-down” points—crosslinks, hydrogen bonding, or crystallinity—which, heretofore, have been considered necessary for good elastomer properties. This work introduces a new concept in elastomer chemistry : bulky, three-dimensional groups are effective tie-down points. Most of the elastomers were prepared with 4,4′- (2-norbornylidene) bis(2,6-dichlorophenol). For comparison, several elastomers with bisphenol-A were also prepared. A statistically designed experiment was carried out to determine the effect of composition variables on the properties of these elastomers. The properties were determined on films cast from methylene chloride and, in many cases, on wet-spun fibers. These elastomers have elongations of 400–600 per cent and instantaneous elastic recoveries up to 100.


1996 ◽  
Vol 58 (5) ◽  
pp. 869-886 ◽  
Author(s):  
I. Kaljević ◽  
S.N. Patnaik ◽  
D.A. Hopkins

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Markus A. Ebert ◽  
Stella T. Schindler ◽  
Iain W. Stewart ◽  
Yong Zhao

Abstract Transverse momentum dependent parton distribution functions (TMDPDFs) provide a unique probe of the three-dimensional spin structure of hadrons. We construct spin-dependent quasi-TMDPDFs that are amenable to lattice QCD calculations and that can be used to determine spin-dependent TMDPDFs. We calculate the short-distance coefficients connecting spin-dependent TMDPDFs and quasi-TMDPDFs at one-loop order. We find that the helicity and transversity distributions have the same coefficient as the unpolarized TMDPDF. We also argue that the same is true for pretzelosity and that this spin universality of the matching will hold to all orders in αs. Thus, it is possible to calculate ratios of these distributions as a function of longitudinal momentum and transverse position utilizing simpler Wilson line paths than have previously been considered.


Sign in / Sign up

Export Citation Format

Share Document