Histology of epiphyseal cartilage calcification and endochondral ossification

10.2741/e526 ◽  
2012 ◽  
Vol E4 (6) ◽  
pp. 2085-2100 ◽  
Author(s):  
Norio Amizuka
1956 ◽  
Vol 2 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Robert A. Robinson ◽  
D. A. Cameron

An examination of the fine structure of cartilage and bone matrix at the distal epiphyseal line of the femur of a newborn infant has revealed the following information. Cartilage matrix is composed of a network of widely spaced fibers without obvious periodic banding. Calcification is first seen about the level of the third chondrocyte capsule distal to the furthest penetration of the capillaries. It starts as a haphazard deposition of crystals which have no obvious relationship to the location of the fibers. The process of calcification is completed before ossification commences but the central zone of matrix remains only partly mineralized. Bone matrix is formed over a bar of calcified cartilage. Fibers, recognizable as collagen, are deposited in a loose network in a narrow zone between the osteoblasts and cartilage. These fibers are 2 to 5 times as wide as the fibers in epiphyseal cartilage. Calcification then begins in the osteoid, crystals being first laid down irregularly on or close to the fibers. As they increase in number, the crystals tend to line up along the fibers and eventually are arranged so that the periodicity of the underlying collagen is emphasized. In such an area the fibers are more tightly packed than when uncalcified. There is no change observed in the calcified cartilage at this level. The extracellular matrices of this epiphyseal cartilage and bone can be distinguished from one another in the electron microscope.


1983 ◽  
Vol 31 (9) ◽  
pp. 1089-1100 ◽  
Author(s):  
M Takagi ◽  
R T Parmley ◽  
F R Denys

Proteoglycans (PGs) are closely associated with cartilage calcification. We have examined the hypertrophic zone of rat epiphyseal cartilage, in which calcification is occurring, using the high-iron diamine-thiocarbohydrazide-silver proteinate (HID-TCH-SP) method for sulfated glycosaminoglycans, an immunoferritin method specific for chondroitin sulfate A, and the tannic acid-ferric chloride (TA-Fe) method to stain cartilage matrix granules (MGs) presumed to be PG monomers. HID-TCH-SP produced stain deposits with a diameter of 11.2 +/- 3.2 nm (mean +/- SD; n = 200) in the MGs. However, HID-TCH-SP staining was not discernible in membrane-limited matrix vesicles (MVs). In areas of advanced calcification, partially disrupted MVs and globular bodies (GBs), derived in part from disrupted and/or degenerated MVs, contained a few too many small HID-TCH-SP stain deposits. Further down the epiphyseal cartilage, intact MVs markedly decreased and the GBs, containing many small HID-TCH-SP stain deposits, significantly increased in number. These GBs were found exclusively in the longitudinal septa rather than in the transverse septa. After enzyme digestion with testicular hyaluronidase, small (7.2 +/- 1.2 nm in diameter) stain deposits remained in the MGs and GBs, presumably localized to keratan sulfate. Immunoferritin localizing chondroitin sulfate strongly stained MGs, whereas MVs and GBs lacked staining. TA-Fe staining of glycoconjugates in the GBs demonstrated a striking decrease in the diameter of MGs associated with calcification in the GBs as compared with those in the noncalcifying area around the GBs. These results indicate that the GBs containing needle-like apatite crystals in morphologic preparations represent sites of chondroitin sulfate degradation. Testicular hyaluronidase-resistant sulfated glycosaminoglycans presumed to be keratan sulfate and partially degraded PGs selectively remain within the GBs as a probable requisite for expansion of the initial calcification in MVs.


Microscopy ◽  
2020 ◽  
Author(s):  
Erika Tsuchiya ◽  
Tomoka Hasegawa ◽  
Hiromi Hongo ◽  
Tomomaya Yamamoto ◽  
Miki Abe ◽  
...  

Abstract This study was aimed to verify the cellular interplay between vascular endothelial cells and surrounding cells in the chondro-osseous junction of murine tibiae. Many CD31-positive endothelial cells accompanied with Dolichos Biflorus Agglutinin lectin-positive septoclasts invaded into the hypertrophic zone of the tibial epiphyseal cartilage. MMP9 immunoreactive cytoplasmic processes of vascular endothelial cells extended into the transverse partitions of cartilage columns. In contrast, septoclasts included several large lysosomes which indicate the incorporation of extracellular matrices despite no immunopositivity for F4/80—a hallmark of macrophage/monocyte lineage. In addition, septoclasts were observed in c-fos-/- mice but not in Rankl-/- mice. Unlike c-fos-/- mice, Rankl-/- mice showed markedly expanded hypertrophic zone and the irregular shape of the chondro-osseous junction. Immunoreactivity of platelet-derived growth factor-bb, which involved in angiogenic roles in the bone, was detected in not only osteoclasts but also septoclasts at the chondro-osseous junction. Therefore, septoclasts appear to assist the synchronous vascular invasion of endothelial cells at the chondro-osseous junction. Vascular endothelial cells adjacent to the chondro-osseous junction possess endomucin but not EphB4, whereas those slightly distant from the chondro-osseous junction were intensely positive for both endomucin and EphB4, while being accompanied with ephrinB2-positive osteoblasts. Taken together, it is likely that vascular endothelial cells adjacent to the chondro-osseous junction would interplay with septoclasts for synchronous invasion into the epiphyseal cartilage, while those slightly distant from the chondro-osseous junction would cooperate with osteoblastic activities presumably by mediating EphB4/ephrinB2. Mini-abstract: Our original article demonstrated that vascular endothelial cells adjacent to the chondro-osseous junction would interplay with septoclasts for synchronous invasion into the epiphyseal cartilage, while those slightly distant from the chondro-osseous junction would cooperate with osteoblastic activities presumably by mediating EphB4/ephrinB2.(A figure that best represents your paper is Fig. 5c)


1954 ◽  
Vol 100 (1) ◽  
pp. 11-24 ◽  
Author(s):  
Dominic D. Dziewiatkowski

The administration of vitamin A to vitamin A-deficient rats resulted in a decreased concentration of inorganic sulfate-sulfur in the serum from a value of 2.5 mg. per cent to 1.8 mg. per cent, the latter being close to the value of 2.0 mg. per cent found in normal rats of the same age. The uptake of sulfate and phosphate by femurs and tibiae of vitamin A-deficient rats was less than that in normal rats of the same age. An increased uptake followed the administration of vitamin A: radioautography indicated that in the case of sulfate, its uptake was particularly increased in the epiphyseal cartilage; an increased uptake of phosphate was particularly evident in the diaphysis immediately adjacent to the epiphyseal cartilage plate. The specific activity of the sulfate-sulfur in the chondroitin sulfate samples isolated from the skeletons of vitamin A-deficient rats fell progressively as the deficiency continued. Following administration of vitamin A, the specific activity approached and exceeded the value given by the sample from the skeletons of normal rats of the same age. A substantial increase was found in the value of the specific activity of the sulfate-sulfur of sulfomucopolysaccharides isolated from skins of vitamin A-deficient rats that had been given vitamin A. Following administration of vitamin A to rats deficient in this vitamin, an increased accumulation of some sulfur-containing material was found in regions of active calcification.


2010 ◽  
Vol 62 (3) ◽  
pp. 826-836 ◽  
Author(s):  
Atsushi Fukai ◽  
Naohiro Kawamura ◽  
Taku Saito ◽  
Yasushi Oshima ◽  
Toshiyuki Ikeda ◽  
...  

Author(s):  
H. Clarke Anderson ◽  
Priscilla R. Coulter

Epiphyseal cartilage matrix contains fibrils and particles of at least 5 different types: 1. Banded collagen fibrils, present throughout the matrix, but not seen in the lacunae. 2. Non-periodic fine fibrils <100Å in diameter (Fig. 1), which are most notable in the lacunae, and may represent immature collagen. 3. Electron dense matrix granules (Fig. 1) which are often attached to fine fibrils and collagen fibrils, and probably contain protein-polysaccharide although the possibility of a mineral content has not been excluded. 4. Matrix vesicles (Fig. 2) which show a selective distribution throughout the epiphysis, and may play a role in calcification. 5. Needle-like apatite crystals (Fig. 2).Blocks of formalin-fixed epiphysis from weanling mice were digested with the following agents in 0.1M phosphate buffer: a) 5% ethylenediaminetetraacetate (EDTA) at pH 8.3, b) 0.015% bovine testicular hyaluronidase (Sigma, type IV, 750 units/mg) at pH 5.5, and c) 0.1% collagenase (Worthington, chromatograhically pure, 200 units/mg) at pH 7.4. All digestions were carried out at 37°C overnight. Following digestion tissues were examined by light and electron microscopy to determine changes in the various fibrils and particles of the matrix.


Sign in / Sign up

Export Citation Format

Share Document