Early-age cracking behavior of advanced reinforced concrete pavement under environmental loading

2021 ◽  
Author(s):  
Muhammad Kashif ◽  
Ahsan Naseem ◽  
Nouman Iqbal ◽  
Pieter De Winne ◽  
Hans De Backer

<p>The technological innovation of continuously reinforced concrete pavement (CRCP) that contains a significantly reduced amount of reinforcement and the same fundamental behaviour as CRCP is called advanced reinforced concrete pavement (ARCP). This new concept of a rigid pavement structure is developed to eliminate unnecessary continuous longitudinal steel bars of CRCP by using partial length steel bars at predetermined crack locations. In Belgium, partial surface saw-cuts are used as the most effective crack induction method to eliminate the randomness in early-age crack patterns by inducing cracks at the predetermined locations of CRCP. The reinforcement layout of ARCP is designed based on the distribution of steel stress in continuous longitudinal steel bar in CRCP and the effectiveness of partial surface saw-cuts as a crack induction method. The 3D finite element (FE) model is developed to evaluate the behaviour of ARCP with partial surface saw-cuts. The early-age crack characteristics in terms of crack initiation and crack propagation obtained from the FE simulation are validated with the field observations of cracking characteristics of the CRCP sections in Belgium. The finding indicates that ARCP exhibits the same cracking characteristics as CRCP even with a significantly reduced amount of continuous reinforcement.</p>

2021 ◽  
Vol 11 (4) ◽  
pp. 1659
Author(s):  
Muhammad Kashif ◽  
Ahsan Naseem ◽  
Nouman Iqbal ◽  
Pieter De Winne ◽  
Hans De Backer

The technological innovation of continuously reinforced concrete pavement (CRCP) that contains a significantly reduced amount of reinforcement and the same fundamental behavior as CRCP is called advanced reinforced concrete pavement (ARCP). This new concept of a rigid pavement structure is developed to eliminate unnecessary continuous longitudinal steel bars of CRCP by using partial length steel bars at predetermined crack locations. In Belgium, partial surface saw-cuts are used as the most effective crack induction method to eliminate the randomness in early-age crack patterns by inducing cracks at the predetermined locations of CRCP. The reinforcement layout of ARCP is designed based on the distribution of steel stress in continuous longitudinal steel bar in CRCP and the effectiveness of partial surface saw-cuts as a crack induction method. The 3D finite element (FE) model is developed to evaluate the behavior of ARCP with partial surface saw-cuts. The early-age crack characteristics in terms of crack initiation and crack propagation obtained from the FE simulation are validated with the field observations of cracking characteristics of the CRCP sections in Belgium. The finding indicates that there is fundamentally no difference in the steel stress distribution in the partial length steel bar of ARCP and continuous steel bar of CRCP. Moreover, ARCP exhibits the same cracking characteristics as CRCP even with a significantly reduced amount of continuous reinforcement.


2021 ◽  
Author(s):  
Muhammad Kashif ◽  
Amelie Outtier ◽  
Muhammad Wisal Khattak ◽  
Pieter De Winne ◽  
Hans De Backer

<p>The objective of this study is to evaluate the horizontal cracking potential in terms of vertical tensile stress development near longitudinal steel bar in the continuously reinforced concrete pavement (CRCP). For this purpose, a three-dimensional (3D) finite element (FE) model of the CRCP segment with partial surface saw-cuts has been developed using the FE tool Diana 10.3. The early-age behaviour of CRCP subjected to external varying temperature field condition has been evaluated by using the staggered structural-flow analysis. The characteristics of the early-age crack pattern in terms of crack initiation and crack propagation obtained from the FE model are compared with the field observations of cracking developments on the CRCP sections in Belgium. The FE results indicate that the vertical tensile stress in concrete near the longitudinal steel bar develops at the transverse crack interface. It translates that the horizontal crack perpendicular to the vertical concrete stress can initiate from the transverse crack depending on the magnitude of stress against developing concrete tensile strength. It has also been observed that the deeper the saw-cut, the larger the magnitude of vertical tensile stress and the higher incident of horizontal cracking. Moreover, the developed 3D FE model can be further used to optimize the early-age behaviour of CRCP in advance of costly field trials.</p>


Author(s):  
Zhengyu Liu ◽  
Brent M. Phares ◽  
Weizhuo Shi ◽  
Behrouz Shafei

The longitudinal joints on adjacent precast, prestressed box beams used in bridge construction are vulnerable to cracking. These cracks provide a direct path for water and deleterious agents to enter the structural system, causing corrosion of the embedded steel bars and tendons. To avoid significant maintenance costs, safety concerns, or both, an innovative longitudinal joint between two adjacent box beams was designed in the current study. This joint is 6½ in. wide with roughened surfaces, filled with shrinkage compensating concrete and reinforced by steel bars. The joint was evaluated on a small-scale basis and satisfactory performance was obtained in resisting early-age cracks. In the current paper, the joint design is further evaluated through experiments on a 31 ft long specimen during the joint’s early age, and when it is subjected to multiple levels of cyclic loads. A finite element (FE) model that is capable of simulating the early-age concrete hardening was also developed and validated against the experimental data. The early-age, time-dependent stress development in the joint and at the interface of the joint and box beam was investigated using the FE model. Based on the results of laboratory tests and FE simulations, the innovative joint was found to remain crack free without the utilization of a shear key or transverse post-tensioning. The “compression-dominate” joint created by the expansive joint material and transverse reinforcing bars across the interface is expected to address the issues associated with early age, while ensuring the long-term durability and performance of box-beam bridges.


2020 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Muhammad Kashif ◽  
Ahsan Naseem ◽  
Nouman Iqbal ◽  
Pieter De Winne ◽  
Hans De Backer

Since 1970, continuously reinforced concrete pavements have been used in Belgium. The standard design concept for CRCP has been modified through several changes made in the design parameters to eliminate the cluster of closely spaced crack patterns, since these crack patterns lead to the development of spalling and punch-out distresses in CRCPs. Despite adjusting the longitudinal reinforcement ratio, slab thickness, and addition of asphalt interlayer, the narrowly spaced cracks could not be effectively removed. The application of transverse partial surface saw-cuts significantly reduced the probability of randomly occurring cracks in the reconstruction project of the Motorway E313 in Herentals, Belgium. The field investigation has also indicated that the early-age crack induction in CRCP is quite susceptible to the saw-cut depth. Therefore, the present study aims to evaluate the effect of different depths and lengths of the partial surface saw-cut on the effectiveness of crack induction in CRCP under external varying temperature field. For this purpose, the FE software program DIANA 10.3 is used to develop the three dimensional finite element model of the active crack control CRCP segment. The characteristics of early-age crack induction in terms of crack initiation and crack propagation obtained from the FE model are compared and discussed concerning the field observations of the crack development on the active crack control E313 test sections. Findings indicate that the deeper saw-cut with longer cut-lengths could be a more effective attempt to induce the cracks in CRCP in desirable distributions to decrease the risk of spalling and punch-out distresses in the long-term performance of CRCP. These findings could be used as guidance to select the appropriate depth and length of saw-cut for active crack control sections of CRCP in Belgium.


Sign in / Sign up

Export Citation Format

Share Document