Experimental Study on Hybrid Masonry Structure with RC Frame under Lateral Reversed Cyclic Loading

Author(s):  
Fei Zhang ◽  
Jianxun Ma

<p>As a new type of structural system, hybrid masonry (HM) structure with reinforced concrete (RC) frame is constructed of reinforced block masonry wall and reinforced concrete frame. This structural system combines the advantages of reinforced concrete frame structure and reinforced concrete block masonry structure, also overcomes some limitations of them. In order to study the seismic performance of the structural system, the lateral reversed cyclic loading experiment on the HM structure with RC frame was conducted. In the experiment, two specimens that were constructed with different connecting type were designed and tested, in one of them the masonry blocks was separated from the RC frame and only connected with steel keys at the top part of the specimen, while in the other there was no spacing between the RC frame and the masonry blocks. According to the data of the experiment, the paper analyzed the failure process and patterns, hysteretic characteristic, skeleton curve, stiffness degradation and displacement ductility of the structural system, and compared the results of the two specimens. The experimental study indicated that the HM structure with RC frame showed extraordinary good seismic performance during testing, and this form of construction had fairly good displacement ductility and energy dissipation, which would provide a basis for further theoretical analysis and design method.</p>

2016 ◽  
Vol 20 (1) ◽  
pp. 4-17 ◽  
Author(s):  
Liang Lu ◽  
Xia Liu ◽  
Junjie Chen ◽  
Xilin Lu

A controlled rocking reinforced concrete frame is a new type of vibration control structure system that uses resilient rocking columns and joints. The effects of earthquakes on this type of structure are reduced by weakening the overall stiffness, whereas the lateral displacement is controlled by the energy-dissipation dampers introduced into the structure. Two tests were performed for research: the reversed cyclic loading test and shaking table test. Two single-span single-story controlled rocking reinforced concrete frames were designed for reversed cyclic loading tests. These tests (i.e. a column-base joint stiffness test, beam-column joint stiffness test, and frame stiffness test) were performed under different conditions. The mechanical analysis model of the rocking joints was derived from the test results. With the parameters obtained from the cyclic tests, a numerical simulation method that established the analytical model of the controlled rocking reinforced concrete frame using the program ABAQUS is proposed, and the dynamic time-history analysis results of the controlled rocking reinforced concrete frame and of the conventional approach are compared to investigate the vibration control effect and seismic performance of the controlled rocking reinforced concrete frame. In addition, the inter-story drift could be effectively controlled by adding metallic dampers, and the shaking table test models of the controlled rocking reinforced concrete frame with metallic dampers were designed and constructed. The comparison of the results of the numerical analysis and the shaking table test demonstrates that the model building of the controlled rocking reinforced concrete frame structure is efficient and that the controlled rocking reinforced concrete frame exhibits an excellent seismic performance.


2013 ◽  
Vol 753-755 ◽  
pp. 719-723
Author(s):  
Xi Kang Yan ◽  
Kang Ma ◽  
Cheng Dong ◽  
Lei Wang ◽  
Pei Chen

Based on experiment of a two-bay two-story reinforced concrete frame with construction joint under low-reversed cyclic loading, hysteretic performance, displacement ductility, bearing capacity degeneration, rigidity degeneration, energy dissipation and displacement restoring capacity are studied systematically. The studies show that the frame with construction joint has not better seismic performance than the monolithic cast frame.


2014 ◽  
Vol 556-562 ◽  
pp. 712-715
Author(s):  
Jing Zhao ◽  
Jing Zhao ◽  
Xing Wang Liu

In collapse-resistant design of a structure under accidental local action, it is important to understand the failure mechanism and alternative load paths. In this paper, a pseudo-static experimental method is proposed. Based on which, the collapse of frame structure was simulated with testing a 1/3 scale; 4-bay and 3-story plane reinforced concrete frame. In the experience, the middle column of the bottom floor was replaced by mechanical jacks to simulate its failure, and the simulated superstructure’s gravity load acted on the column of the top floor by adopting a servo-hydraulic actuator with force –controlled mode.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 291
Author(s):  
Andrii Pavlikov ◽  
Serhii Mykytenko ◽  
Anton Hasenko

This article falls within vital question in quickly builds construction – theoretical method for calculating the slabs and columns of such buildings. Calculation research of buildings with reinforced concrete frame slabs is described in the article. The features of work the collapsible flat plate ceiling in composition of reinforced concrete framework of building are analyzed. Problems in the design of framework building are considered in order to increase its reliability. The suggestions for directions of perfection the calculation of flat plate frame construction elements are proposed in the article. The novelty of this work is to get new theoretical data about bearing capacity and deformability of structural system for the affordable housing construction from reinforced concrete.  


2017 ◽  
Vol 21 ◽  
pp. 22-32
Author(s):  
Prachand Man Pradhan ◽  
Ramesh Kumar Maskey ◽  
Prajwal Lal Pradhan

The partially infilled frames are considered vulnerable in terms of captive column effect for the events of earthquakes. Many reinforced concrete buildings have been affected due to captive column effects. Experimental study has been done to verify the captive column effect and its failure modes for partially infilled frames and the results have been compared with the ones obtained for a bare frame subjected to lateral loading. The results of experimental study have also been compared with some analytical results and the verification of equivalent strut width proposed by one of the authors has been done. From the experimental point of view, it is understandable that due to lateral loading to partially infilled frames, the damage pattern is diagonal and the failure of column occurs at the column-wall joint at the upper side of the wall. It is also seen that for fifty percent partially infilled frames, the stiffness of bare frame is enhanced slightly, however, the failure in the column during lateral loading indicates that the columns are subjected to high shear due to the presence of partial infill.


2011 ◽  
Vol 250-253 ◽  
pp. 2744-2748
Author(s):  
Chun Yang Liu ◽  
Zhen Bao Li ◽  
Hua Ma ◽  
Jian Qiang Han ◽  
Shi Cai Chen

Experiments on reinforced concrete frame spatial joints are conducted under low level cyclic loadings.The seismic performance of the spatial joints is investigated,including failure mode,hysterisis curve, stiffness degradation,energy dissipation and displacement ductility.The experiment result shows that the column-hinge damage mechanism had happened and the bearing capactity ,energy dissipation character and displacement ductility had decreased under the oblique direction earthquake effect.The aseismic designing method should consider the oblique direction earthquake effect.


Sign in / Sign up

Export Citation Format

Share Document