Advanced Simulations for Seismic Design of Reinforced Concrete Joints

Author(s):  
Roberto T. leon ◽  
Ioannis Koutromanos ◽  
Chenxi Xing

<p>The seismic performance of older reinforced concrete moment frames in recent earthquakes indicates that these buildings are particularly vulnerable to collapse. Although extensive experimental research over the last three decades has clarified some of the mechanisms governing the behavior of this structural typology, detailed modeling of their behavior has remained elusive. A primary reason is that our ability to model the beam-column-slab connections is poor when shear cracking and bond degradation interact strongly. In this work, two types of advanced models have been developed to address this shortcoming: one based on a refined finite element analysis and one on a simplified truss analogy. In both cases, the intent is to elucidate the resistance mechanisms, peak strength, bond behavior and ductility exhibited by beam column joints. In the finite element formulation, superior results are obtained through careful material modeling, including the bond-slip relationship. The simplified model uses a nonlinear truss analogy, with the bond-slip effect accounted for through nonlinear zero-length spring elements with appropriate constitutive relationships. Both models are calibrated to well-documented tests and are shown to produce very good results when comparing local measurements. The truss model actually produces better results for cases where shear cracking dominates the overall behavior. The models are used to assess the performance of prototype connections designed to meet current American design standards. The results indicate that these joints will perform as expected under uniaxial cyclic loads, with strength and stiffness deterioration beginning around 3% drift. Further studies, not described herein, have shown very poor joint performance if subjected to biaxial loads and poorly if subjected to large cyclic deformations.</p>

2011 ◽  
Vol 243-249 ◽  
pp. 204-208
Author(s):  
Wei Guo Jiang

In performance-based seismic design method, it is very important to have a good command of the nonlinear performance of a structural system, including in the collapse stage. In this paper, a nonlinear finite-element analysis on reinforced concrete moment frames is carried out. After studying the forces and deformations behavior in beam-column elements, the element stiffness matrix of distributed plasticity beam-column element is deduced using the Cotes scheme with 5 integration points. During the occurrence and development of plastic hinges, sections at some integration points will experience loading, unloading and reverse loading and the stiffness of these sections will experience various status. A quadrilinear form moment-curvature relationships with curvature- softening behavior and the hysteretic modes are used in the nonlinear static analysis program. The numerical analysis is carried out and the numerical results validate the load-displacement relationships and the yield mechanism of experiment frames.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 293
Author(s):  
Alinda Dey ◽  
Domas Valiukas ◽  
Ronaldas Jakubovskis ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

A bond mechanism at the reinforcement-concrete interface is one of the key sources of the comprehensive functioning of reinforced concrete (RC) structures. In order to apprehend the bond mechanism, the study on bond stress and slip relation (henceforth referred as bond-slip) is necessary. On this subject, experimental and numerical investigations were performed on short RC tensile specimens. A double pull-out test with pre-installed electrical strain gauge sensors inside the modified embedded rebar was performed in the experimental part. Numerically, a three dimensional rib scale model was designed and finite element analysis was performed. The compatibility and reliability of the numerical model was verified by comparing its strain result with an experimentally obtained one. Afterwards, based on stress transfer approach, the bond-slip relations were calculated from the extracted strain results. The maximum disparity between experimental and numerical investigation was found as 19.5% in case of strain data and 7% for the bond-slip relation at the highest load level (110 kN). Moreover, the bond-slip curves at different load levels were compared with the bond-slip model established in CEB-fib Model Code 2010 (MC2010). Overall, in the present study, strain monitoring through the experimental tool and finite element modelling have accomplished a broader picture of the bond mechanism at the reinforcement-concrete interface through their bond-slip relationship.


2015 ◽  
Vol 8 (6) ◽  
pp. 787-799 ◽  
Author(s):  
A. R. V. WOLENSKI ◽  
S. S. DE CASTRO ◽  
S. S. PENNA ◽  
R. L. S. PITANGUEIRA ◽  
B. V. SILVA ◽  
...  

Abstract The modeling of reinforced concrete structures has taken advantage of the increasing progress on Computational Mechanics, in such way that complex phenomena, such as cracking and crushing, creep, reinforcement yielding, steel-concrete bond loss, can be modeled in a reasonable realistic way, using the proper set of numerical and computational resources. Among several options, the ones based on the Finite Element Method (FEM) allow complex analysis simulations of reinforced concrete structures, including the interaction of different nonlinear effects. This paper deals with the nonlinear finite element analysis of the bond-slip between reinforcing steel and concrete, taking into account an experimental study previously performed. The FEM analysis presented uses a combination of resources where the material behavior of concrete is described by the Microplane Constitutive Model, and an embedded reinforcement model is used to represent steel inside the concrete and take into account the effect of bond-slip. The FEM models were created using the INSANE (INteractive Structural ANalysis Environment) computational system, open source software that has a set of FEM tools for nonlinear analysis of reinforced concrete structures. The correlations between numerical-experimentals results and several parameters validate the proposed combination of resources and identifies the significance of various effects on the response.


2011 ◽  
Vol 101-102 ◽  
pp. 329-332
Author(s):  
Fu Lai Qu ◽  
Shun Bo Zhao ◽  
Zhi Mei Zhou ◽  
Baoan Yuan

Reinforcement and concrete can work together to bear load in reinforced concrete structures, one of the main reasons is the relatively prefect bond between reinforcement and concrete. When steel reinforcement corrodes, the bond strength decreases and leads to the degradation of the reinforced concrete members. This paper built a finite element model by selecting appropriate stress-strain relationship of concrete and reinforcement, bond-slip relationship between concrete and corroded steel bars. The flexural behavior of corroded reinforced concrete lock-walls was analyzed by nonlinear finite element method. The calculated results were compared with the test results to verify the reliability of the finite element model. Finally, the influence of corrosion level of steel reinforcement and concrete strength on the normal section bearing capacity of lock-walls were discussed.


Sign in / Sign up

Export Citation Format

Share Document