scholarly journals The origin of the recent swine influenza A(H1N1) virus infecting humans

2009 ◽  
Vol 14 (17) ◽  
Author(s):  
V Trifonov ◽  
H Khiabanian ◽  
B Greenbaum ◽  
R Rabadan

Preliminary analysis of the genome of the new H1N1 influenza A virus responsible for the current pandemic indicates that all genetic segments are related closest to those of common swine influenza viruses.

2016 ◽  
Vol 2016 ◽  
pp. 1-3 ◽  
Author(s):  
Can Hüzmeli ◽  
Mustafa Saglam ◽  
Ali Arıkan ◽  
Barıs Doner ◽  
Gulay Akıncı ◽  
...  

Influenza viruses are members of the Orthomyxoviridae family, of which influenza A, B, and C viruses constitute three separate genera. Arterial thrombosis associated with H1N1 influenza A virus infection has rarely been reported. A Turkish man aged 28 years was admitted to our emergency department with dyspnea, bilateral lower extremity insensitivity, and cold. He reported symptoms of fever, myalgia, and cough, which he had had for fifteen days before being admitted to our hospital. The patient was tested for pandemic influenza A (H1N1) virus using polymerase chain reaction (PCR) tests, which were positive. Abdominal computerized tomography with contrast revealed a large occlusive thrombus within the infrarenal aorta.


2009 ◽  
Vol 14 (21) ◽  
Author(s):  
A Solovyov ◽  
G Palacios ◽  
T Briese ◽  
W I Lipkin ◽  
R Rabadan

In March and April 2009, a new strain of influenza A(H1N1) virus has been isolated in Mexico and the United States. Since the initial reports more than 10,000 cases have been reported to the World Health Organization, all around the world. Several hundred isolates have already been sequenced and deposited in public databases. We have studied the genetics of the new strain and identified its closest relatives through a cluster analysis approach. We show that the new virus combines genetic information related to different swine influenza viruses. Segments PB2, PB1, PA, HA, NP and NS are related to swine H1N2 and H3N2 influenza viruses isolated in North America. Segments NA and M are related to swine influenza viruses isolated in Eurasia.


2010 ◽  
Vol 17 (12) ◽  
pp. 1998-2006 ◽  
Author(s):  
Ali H. Ellebedy ◽  
Thomas P. Fabrizio ◽  
Ghazi Kayali ◽  
Thomas H. Oguin ◽  
Scott A. Brown ◽  
...  

ABSTRACT Human influenza pandemics occur when influenza viruses to which the population has little or no immunity emerge and acquire the ability to achieve human-to-human transmission. In April 2009, cases of a novel H1N1 influenza virus in children in the southwestern United States were reported. It was retrospectively shown that these cases represented the spread of this virus from an ongoing outbreak in Mexico. The emergence of the pandemic led to a number of national vaccination programs. Surprisingly, early human clinical trial data have shown that a single dose of nonadjuvanted pandemic influenza A (H1N1) 2009 monovalent inactivated vaccine (pMIV) has led to a seroprotective response in a majority of individuals, despite earlier studies showing a lack of cross-reactivity between seasonal and pandemic H1N1 viruses. Here we show that previous exposure to a contemporary seasonal H1N1 influenza virus and to a lesser degree a seasonal influenza virus trivalent inactivated vaccine is able to prime for a higher antibody response after a subsequent dose of pMIV in ferrets. The more protective response was partially dependent on the presence of CD8+ cells. Two doses of pMIV were also able to induce a detectable antibody response that provided protection from subsequent challenge. These data show that previous infection with seasonal H1N1 influenza viruses likely explains the requirement for only a single dose of pMIV in adults and that vaccination campaigns with the current pandemic influenza vaccines should reduce viral burden and disease severity in humans.


1993 ◽  
Vol 90 (3) ◽  
pp. 397-402 ◽  
Author(s):  
N. Masurel ◽  
R. A. Heijtin

SUMMARYSera from people born between 1883 and 1930 and collected in 1977 were tested for the presence of HI antibodies to A/FM/1/47 (H1N1) virus and three recently (1977 and 1978) isolated influenza A-H1N1 viruses. The highest frequency of high-titred antibody to the four H1N1 viruses was detected in sera from people born in 1903–4, i.e. 42,54,38, and 22% had antibody against A/FM/1/47, A/Hong Kong/117/77, A/Brazil/11/78, and A/Fukushima/103/78 respectively. The birthdate groups 1896–1907 showed a higher percentage of HI antibody titres ≥18, ≥50, ≥100 or ≥1600 against the four H1N1 viruses than the birthdate groups 1907–30. This indicates the existence of an era, 1908–18, in which, apart from the H3N2 virus (1900–18), the H1N1 virus was epidemic among the human population.


mBio ◽  
2010 ◽  
Vol 1 (1) ◽  
Author(s):  
Brett W. Jagger ◽  
Matthew J. Memoli ◽  
Zong-Mei Sheng ◽  
Li Qi ◽  
Rachel J. Hrabal ◽  
...  

ABSTRACTThe swine-origin H1N1 influenza A virus emerged in early 2009 and caused the first influenza pandemic in 41 years. The virus has spread efficiently to both the Northern and the Southern Hemispheres and has been associated with over 16,000 deaths. Given the virus’s recent zoonotic origin, there is concern that the virus could acquire signature mutations associated with the enhanced pathogenicity of previous pandemic viruses or H5N1 viruses with pandemic potential. We tested the hypothesis that mutations in the polymerase PB2 gene at residues 627 and 701 would enhance virulence but found that influenza viruses containing these mutations in the context of the pandemic virus polymerase complex are attenuated in cell culture and mice.IMPORTANCEInfluenza A virus (IAV) evolution is characterized by host-specific lineages, and IAVs derived in whole or in part from animal reservoirs have caused pandemics in humans. Because IAVs are known to acquire host-adaptive genome mutations, and since the PB2 gene of the 2009 H1N1 virus is of recent avian derivation, there exists concern that the pathogenicity of the 2009 H1N1 influenza A pandemic virus could be potentiated by acquisition of the host-adaptive PB2-E627K or -D701N mutations, which have been shown to enhance the virulence of other influenza viruses. We present data from a mouse model of influenza infection showing that such mutations do not increase the virulence of viruses containing the 2009 H1N1 viral polymerase.


2009 ◽  
Vol 84 (3) ◽  
pp. 1414-1422 ◽  
Author(s):  
Pamela Österlund ◽  
Jaana Pirhonen ◽  
Niina Ikonen ◽  
Esa Rönkkö ◽  
Mari Strengell ◽  
...  

ABSTRACT In less than 3 months after the first cases of swine origin 2009 influenza A (H1N1) virus infections were reported from Mexico, WHO declared a pandemic. The pandemic virus is antigenically distinct from seasonal influenza viruses, and the majority of human population lacks immunity against this virus. We have studied the activation of innate immune responses in pandemic virus-infected human monocyte-derived dendritic cells (DC) and macrophages. Pandemic A/Finland/553/2009 virus, representing a typical North American/European lineage virus, replicated very well in these cells. The pandemic virus, as well as the seasonal A/Brisbane/59/07 (H1N1) and A/New Caledonia/20/99 (H1N1) viruses, induced type I (alpha/beta interferon [IFN-α/β]) and type III (IFN-λ1 to -λ3) IFN, CXCL10, and tumor necrosis factor alpha (TNF-α) gene expression weakly in DCs. Mouse-adapted A/WSN/33 (H1N1) and human A/Udorn/72 (H3N2) viruses, instead, induced efficiently the expression of antiviral and proinflammatory genes. Both IFN-α and IFN-β inhibited the replication of the pandemic (H1N1) virus. The potential of IFN-λ3 to inhibit viral replication was lower than that of type I IFNs. However, the pandemic virus was more sensitive to the antiviral IFN-λ3 than the seasonal A/Brisbane/59/07 (H1N1) virus. The present study demonstrates that the novel pandemic (H1N1) influenza A virus can readily replicate in human primary DCs and macrophages and efficiently avoid the activation of innate antiviral responses. It is, however, highly sensitive to the antiviral actions of IFNs, which may provide us an additional means to treat severe cases of infection especially if significant drug resistance emerges.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 793
Author(s):  
Ying Huang ◽  
Monique S. França ◽  
James D. Allen ◽  
Hua Shi ◽  
Ted M. Ross

Vaccination is the best way to prevent influenza virus infections, but the diversity of antigenically distinct isolates is a persistent challenge for vaccine development. In order to conquer the antigenic variability and improve influenza virus vaccine efficacy, our research group has developed computationally optimized broadly reactive antigens (COBRAs) in the form of recombinant hemagglutinins (rHAs) to elicit broader immune responses. However, previous COBRA H1N1 vaccines do not elicit immune responses that neutralize H1N1 virus strains in circulation during the recent years. In order to update our COBRA vaccine, two new candidate COBRA HA vaccines, Y2 and Y4, were generated using a new seasonal-based COBRA methodology derived from H1N1 isolates that circulated during 2013–2019. In this study, the effectiveness of COBRA Y2 and Y4 vaccines were evaluated in mice, and the elicited immune responses were compared to those generated by historical H1 COBRA HA and wild-type H1N1 HA vaccines. Mice vaccinated with the next generation COBRA HA vaccines effectively protected against morbidity and mortality after infection with H1N1 influenza viruses. The antibodies elicited by the COBRA HA vaccines were highly cross-reactive with influenza A (H1N1) pdm09-like viruses isolated from 2009 to 2021, especially with the most recent circulating viruses from 2019 to 2021. Furthermore, viral loads in lungs of mice vaccinated with Y2 and Y4 were dramatically reduced to low or undetectable levels, resulting in minimal lung injury compared to wild-type HA vaccines following H1N1 influenza virus infection.


2015 ◽  
Vol 89 (10) ◽  
pp. 5651-5667 ◽  
Author(s):  
Daniel Dlugolenski ◽  
Les Jones ◽  
Elizabeth Howerth ◽  
David Wentworth ◽  
S. Mark Tompkins ◽  
...  

ABSTRACTSwine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression.IMPORTANCEInfluenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.


2012 ◽  
Vol 93 (6) ◽  
pp. 1261-1268 ◽  
Author(s):  
Wenjun Ma ◽  
Qinfang Liu ◽  
Bhupinder Bawa ◽  
Chuanling Qiao ◽  
Wenbao Qi ◽  
...  

The 2009 pandemic H1N1 virus (pH1N1) contains neuraminidase (NA) and matrix (M) genes from Eurasian avian-like swine influenza viruses (SIVs), with the remaining six genes from North American triple-reassortant SIVs. To characterize the role of the pH1N1 NA and M genes in pathogenesis and transmission, their impact was evaluated in the background of an H1N1 triple-reassortant (tr1930) SIV in which the HA (H3) and NA (N2) of influenza A/swine/Texas/4199-2/98 virus were replaced with those from the classical H1N1 A/swine/Iowa/15/30 (1930) virus. The laboratory-adapted 1930 virus did not shed nor transmit in pigs, but tr1930 was able to shed in infected pigs. The NA, M or both genes of the tr1930 virus were then substituted by those of pH1N1. The resulting virus with both NA and M from pH1N1 grew to significantly higher titre in cell cultures than the viruses with single NA or M from pH1N1. In a pig model, only the virus containing both NA and M from pH1N1 was transmitted to and infected sentinels, whereas the viruses with single NA or M from pH1N1 did not. These results demonstrate that the right combination of NA and M genes is critical for the replication and transmissibility of influenza viruses in pigs.


Sign in / Sign up

Export Citation Format

Share Document