scholarly journals Exact null controllability of semilinear integro-differential systems

2002 ◽  
Vol 7 (7) ◽  
pp. 375-383 ◽  
Author(s):  
G. Aniculăesei ◽  
S. Aniţa

We study the internal exact null controllability of a nonlinear heat equation with homogeneous Dirichlet boundary condition. The method used combines the Kakutani fixed-point theorem and the Carleman estimates for the backward adjoint linearized system. The result extends to the case of boundary control.


2019 ◽  
Vol 25 ◽  
pp. 60
Author(s):  
Debayan Maity ◽  
Debanjana Mitra ◽  
Michael Renardy

We consider controllability of linear viscoelastic flow with a localized control in the momentum equation. We show that, for Jeffreys fluids or for Maxwell fluids with more than one relaxation mode, exact null controllability does not hold. This contrasts with known results on approximate controllability.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Benzion Shklyar

<p style='text-indent:20px;'>The exact null-controllability problem in the class of smooth controls with applications to interconnected systems was considered in [<xref ref-type="bibr" rid="b23">23</xref>] for the case of bounded input operators appearing in systems with distributed controls. The current paper constitutes an extension of the [<xref ref-type="bibr" rid="b23">23</xref>] for the case of unbounded input operators (with more emphasis on the controllability of interconnected systems). The proofs of the results of [<xref ref-type="bibr" rid="b23">23</xref>] for the case of bounded input operators are adopted for the case of unbounded input operators.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Sutrima Sutrima ◽  
Christiana Rini Indrati ◽  
Lina Aryati

In the theory control systems, there are many various qualitative control problems that can be considered. In our previous work, we have analyzed the approximate controllability and observability of the nonautonomous Riesz-spectral systems including the nonautonomous Sturm-Liouville systems. As a continuation of the work, we are concerned with the analysis of stability, stabilizability, detectability, exact null controllability, and complete stabilizability of linear non-autonomous control systems in Banach spaces. The used analysis is a quasisemigroup approach. In this paper, the stability is identified by uniform exponential stability of the associated C0-quasisemigroup. The results show that, in the linear nonautonomous control systems, there are equivalences among internal stability, stabizability, detectability, and input-output stability. Moreover, in the systems, exact null controllability implies complete stabilizability.


Sign in / Sign up

Export Citation Format

Share Document