scholarly journals Variations to Spin Crossover in [FexZn(1−x)(Me1,3bpp)2(ClO4)2] molecular alloys examined by Magnetometry and Single Crystal X-Ray Diffraction

2021 ◽  
Author(s):  
Rosa Diego ◽  
Olivier Roubeau ◽  
Guillem Aromí

Spin crossover (SCO) active solid solutions with formula [FexZn1-x(Me1,3bpp)2](ClO4)2 (x = 0.10, 0.15, 0.22, 0.33, 0.41, 0.48, 0.56 and 0.64, Me1,3bpp is a bis-pyrazolylpyridine) and the complex [Zn(Me1,3bpp)2](ClO4)2 have been prepared and characterized by single crystal X-ray diffraction. The structural data and the powder diffraction patterns of all the compounds have been compared with the reported isostructural molecular crystal [Fe(Me1,3bpp)2](ClO4)2. Increasing amounts of Zn diminishes monotonically the cooperativity of the SCO of the parent Fe(II) complex (T1/2=183 K) and cause a decrease of T1/2 in line with the negative chemical pressure exerted by the Zn(II) complexes on the Fe(II) lattice. The gradual variation of the magnetic properties as the composition changes are paralleled by the evolution of the structural parameters at the molecular, intermolecular and crystal lattice scales. Thermal trapping of a portion of the Fe(II) centers of these alloys by quenching the crystals to 2 K unveils that, upon warming, the temperature of relaxation of the metastable states is almost constant for all compositions.

2009 ◽  
Vol 73 (3) ◽  
pp. 359-371 ◽  
Author(s):  
G. D. Gatta ◽  
N. Rotiroti ◽  
M. Zucali

AbstractThe crystalch emistry and crystal structure of naturalky anite crystals from the Eclogitic Micaschists Complex of the Sesia-Lanzo Zone, Western Italian Alps, have been investigated by means of optical microscopy, wavelength dispersive X-ray microanalysis, and single-crystal X-ray diffraction. The association of kyanite + garnet + phengitic-mica + chloritoid suggests that the eclogite-facies stages occurred at P ≤ 2.1 GPa and T ≤ 650ºC. Kyanite grains are large (cm-sized) porphyroblasts grown dynamically during one of the deformational events related to the subduction of the Austroalpine continentalcr ust. Under the polarizing microscope, kyanite grains show almost homogeneous cores, whereas rims are sometimes symplectitic aggregates of quartz and kyanite, confirming at least two stages of growth most likely related to the multistage deformational history of these rocks. Chemical analysis shows that Fe3+ is the major substituting cation for Al3+, ranging between 0.038 and 0.067 a.p.f.u.The single-crystal X-ray diffraction investigation of the kyanites shows severely textured patterns on the (h0l)*-plane. Such evidence is not observed in the unwarped diffraction patterns on (0kl)* and (hk0)*. The most significant difference between the structuralp arameters refined in this study, with respect to those of previously published unstrained gem-quality crystals, concerns the displacement parameters. The anisotropic displacement ellipsoids of all the atomic sites are significantly larger than those previously described, and systematically oriented with the largest elliptical section almost perpendicular to [010]. The larger ellipsoids in the kyanite crystal investigated here reflect the displacement of the centre of gravity of the electron distribution, rather than an anomalous atomic thermal motion. The magnitude and orientation of the displacement parameters and the textured/strained diffraction pattern may be the result of two combined effects: (1) that the kyanite crystals are actually composed of several blocks; (2) the crystals are affected by a pervasive residual strain, as a result of tectonometamorphic plastic deformations and re-crystallization.


2015 ◽  
Vol 70 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Martin Lampl ◽  
Gerhard Laus ◽  
Doris E. Braun ◽  
Volker Kahlenberg ◽  
Klaus Wurst ◽  
...  

AbstractThe preparation of six new 5,5′-azotetrazolates with organic cations is reported. Differential scanning calorimetry of all compounds showed exothermic decompositions. The crystal structures of the six 5,5′-azotetrazolates were determined by single-crystal X-ray diffraction analyses. The phase purities of the bulk samples were confirmed by Pawley fits of the experimental and calculated powder X-ray diffraction patterns.


2015 ◽  
Vol 48 (6) ◽  
pp. 1943-1955 ◽  
Author(s):  
Antonios Vamvakeros ◽  
Simon D. M. Jacques ◽  
Marco Di Michiel ◽  
Vesna Middelkoop ◽  
Christopher K. Egan ◽  
...  

This paper reports a simple but effective filtering approach to deal with single-crystal artefacts in X-ray diffraction computed tomography (XRD-CT). In XRD-CT, large crystallites can produce spots on top of the powder diffraction rings, which, after azimuthal integration and tomographic reconstruction, lead to line/streak artefacts in the tomograms. In the simple approach presented here, the polar transform is taken of collected two-dimensional diffraction patterns followed by directional median/mean filtering prior to integration. Reconstruction of one-dimensional diffraction projection data sets treated in such a way leads to a very significant improvement in reconstructed image quality for systems that exhibit powder spottiness arising from large crystallites. This approach is not computationally heavy which is an important consideration with big data sets such as is the case with XRD-CT. The method should have application to two-dimensional X-ray diffraction data in general where such spottiness arises.


2018 ◽  
Vol 25 (3) ◽  
pp. 748-756 ◽  
Author(s):  
M. X. Tang ◽  
Y. Y. Zhang ◽  
J. C. E ◽  
S. N. Luo

Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.


2014 ◽  
Vol 47 (1) ◽  
pp. 215-221 ◽  
Author(s):  
Devinder Singh ◽  
Yifeng Yun ◽  
Wei Wan ◽  
Benjamin Grushko ◽  
Xiaodong Zou ◽  
...  

Electron diffraction is a complementary technique to single-crystal X-ray diffraction and powder X-ray diffraction for structure solution of unknown crystals. Crystals too small to be studied by single-crystal X-ray diffraction or too complex to be solved by powder X-ray diffraction can be studied by electron diffraction. The main drawbacks of electron diffraction have been the difficulties in collecting complete three-dimensional electron diffraction data by conventional electron diffraction methods and the very time-consuming data collection. In addition, the intensities of electron diffraction suffer from dynamical scattering. Recently, a new electron diffraction method, rotation electron diffraction (RED), was developed, which can overcome the drawbacks and reduce dynamical effects. A complete three-dimensional electron diffraction data set can be collected from a sub-micrometre-sized single crystal in less than 2 h. Here the RED method is applied forab initiostructure determination of an unknown complex intermetallic phase, the pseudo-decagonal (PD) quasicrystal approximant Al37.0(Co,Ni)15.5, denoted as PD2. RED shows that the crystal is F-centered, witha= 46.4,b= 64.6,c= 8.2 Å. However, as with other approximants in the PD series, the reflections with oddlindices are much weaker than those withleven, so it was decided to first solve the PD2 structure in the smaller, primitive unit cell. The basic structure of PD2 with unit-cell parametersa= 23.2,b= 32.3,c= 4.1 Å and space groupPnmmhas been solved in the present study. The structure withc= 8.2 Å will be taken up in the near future. The basic structure contains 55 unique atoms (17 Co/Ni and 38 Al) and is one of the most complex structures solved by electron diffraction. PD2 is built of characteristic 2 nm wheel clusters with fivefold rotational symmetry, which agrees with results from high-resolution electron microscopy images. Simulated electron diffraction patterns for the structure model are in good agreement with the experimental electron diffraction patterns obtained by RED.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1136-C1136
Author(s):  
Kazuaki Aburaya ◽  
Chiaki Tsuboi ◽  
Fumiko Kimura ◽  
Kenji Matsumoto ◽  
Masataka Maeyama ◽  
...  

A three dimensionally magnetically oriented microcrystal array (3D-MOMA) is attractive to determination of a crystal structure as well as a molecular structure because it does not require a single crystal with sufficient size and quality for diffraction studies. We have developed a novel method to fabricate 3D-MOMA and determined several crystal structures using the 3D-MOMAs[1],[2]. However, the structure determination through MOMA requires a solidification treatment with UV curable monomer prior to X-ray diffraction experiment. We have developed a new X-ray diffractometer equipped with a magnetic field generator, which makes it possible to collect diffraction data without the solidification treatment. In this poster, we describe X-ray diffraction analyses of a magnetically oriented microcrystal suspension (MOMS) of L-alanine without the solidification treatment. A suspension of L-alanine microcrystals was poured in a glass capillary and rotated at a constant speed in a magnetic circuit attached in the X-ray diffractometer. Then, diffraction images were collected every 60 seconds. In the initial phase, the diffraction pattern showed a broad shape similar to that from a powder sample. As time goes on, diffraction patterns have gradually changed to single-crystal like patterns. After 2 hours, the shape of diffraction spots became as sharp as that of a single crystal. This observation shows that the microcrystals are oriented in the same direction. Owing to the improvement of the magnetic circuit and X-ray diffractometer, the quality of the diffraction has been greatly improved compared to that reported previously[3]. Further details of the analyses will be shown in the poster.


1989 ◽  
Vol 160 ◽  
Author(s):  
L.M. Goldman ◽  
H.A. Atwater ◽  
F. Spaepen

AbstractX-ray diffraction is one of the main methods of determining the structure of multilayers. Low angle reflectivity measurements are particulary useful for multilayers containing polycrystalline or amorphous constituents, and for obtaining specific structural data. We present a method based on both kinematic and dynamic scattering calculations, and use it to extract specific structural parameters such as the roughness or diffuseness of the external surface, the thickness of the constituent layers, and the roughness or diffuseness of the internal interfaces. Results are given for a sputtered A1/A12O3 multilayer.


2007 ◽  
Vol 130 ◽  
pp. 281-286 ◽  
Author(s):  
Tomasz Goryczka ◽  
Grzegorz Dercz ◽  
Lucjan Pająk ◽  
Eugeniusz Łągiewka

Grazing incident X-ray diffraction technique was applied to determine the influence of incident beam angle (α angle) on structural parameters as well as peak profile. X-ray diffraction patterns were registered in asymmetrical geometry, in which a parallel beam was formed by Soller and divergence slits. Lowering of the α angle results in accuracy decrease of lattice parameters as well as in significant broadening of a half-width of X-ray diffraction line.


Sign in / Sign up

Export Citation Format

Share Document