A Systematic Method for Extracting Structural Parameters from Low Angle X-Ray Reflectivity Measurements on Multilayers

1989 ◽  
Vol 160 ◽  
Author(s):  
L.M. Goldman ◽  
H.A. Atwater ◽  
F. Spaepen

AbstractX-ray diffraction is one of the main methods of determining the structure of multilayers. Low angle reflectivity measurements are particulary useful for multilayers containing polycrystalline or amorphous constituents, and for obtaining specific structural data. We present a method based on both kinematic and dynamic scattering calculations, and use it to extract specific structural parameters such as the roughness or diffuseness of the external surface, the thickness of the constituent layers, and the roughness or diffuseness of the internal interfaces. Results are given for a sputtered A1/A12O3 multilayer.

2021 ◽  
Author(s):  
Rosa Diego ◽  
Olivier Roubeau ◽  
Guillem Aromí

Spin crossover (SCO) active solid solutions with formula [FexZn1-x(Me1,3bpp)2](ClO4)2 (x = 0.10, 0.15, 0.22, 0.33, 0.41, 0.48, 0.56 and 0.64, Me1,3bpp is a bis-pyrazolylpyridine) and the complex [Zn(Me1,3bpp)2](ClO4)2 have been prepared and characterized by single crystal X-ray diffraction. The structural data and the powder diffraction patterns of all the compounds have been compared with the reported isostructural molecular crystal [Fe(Me1,3bpp)2](ClO4)2. Increasing amounts of Zn diminishes monotonically the cooperativity of the SCO of the parent Fe(II) complex (T1/2=183 K) and cause a decrease of T1/2 in line with the negative chemical pressure exerted by the Zn(II) complexes on the Fe(II) lattice. The gradual variation of the magnetic properties as the composition changes are paralleled by the evolution of the structural parameters at the molecular, intermolecular and crystal lattice scales. Thermal trapping of a portion of the Fe(II) centers of these alloys by quenching the crystals to 2 K unveils that, upon warming, the temperature of relaxation of the metastable states is almost constant for all compositions.


Author(s):  
K. H. Downing ◽  
S. G. Wolf ◽  
E. Nogales

Microtubules are involved in a host of critical cell activities, many of which involve transport of organelles through the cell. Different sets of microtubules appear to form during the cell cycle for different functions. Knowledge of the structure of tubulin will be necessary in order to understand the various functional mechanisms of microtubule assemble, disassembly, and interaction with other molecules, but tubulin has so far resisted crystallization for x-ray diffraction studies. Fortuitously, in the presence of zinc ions, tubulin also forms two-dimensional, crystalline sheets that are ideally suited for study by electron microscopy. We have refined procedures for forming the sheets and preparing them for EM, and have been able to obtain high-resolution structural data that sheds light on the formation and stabilization of microtubules, and even the interaction with a therapeutic drug.Tubulin sheets had been extensively studied in negative stain, demonstrating that the same protofilament structure was formed in the sheets and microtubules. For high resolution studies, we have found that the sheets embedded in either glucose or tannin diffract to around 3 Å.


2012 ◽  
Vol 76 (4) ◽  
pp. 963-973 ◽  
Author(s):  
G. O. Lepore ◽  
T. Boffa Ballaran ◽  
F. Nestola ◽  
L. Bindi ◽  
D. Pasqual ◽  
...  

AbstractAmbient temperature X-ray diffraction data were collected at different pressures from two crystals of β-As4S4, which were made by heating realgar under vacuum at 295ºC for 24 h. These data were used to calculate the unit-cell parameters at pressures up to 6.86 GPa. Above 2.86 GPa, it was only possible to make an approximate measurement of the unit-cell parameters. As expected for a crystal structure that contains molecular units held together by weak van der Waals interactions, β-As4S4 has an exceptionally high compressibility. The compressibility data were fitted to a third-order Birch–Murnaghan equation of state with a resulting volume V0 = 808.2(2) Å3, bulk modulus K0 = 10.9(2) GPa and K' = 8.9(3). These values are extremely close to those reported for the low-temperature polymorph of As4S4, realgar, which contains the same As4S4 cage-molecule. Structural analysis showed that the unit-cell contraction is due mainly to the reduction in intermolecular distances, which causes a substantial reduction in the unit-cell volume (∼21% at 6.86 GPa). The cage-like As4S4 molecules are only slightly affected. No phase transitions occur in the pressure range investigated.Micro-Raman spectra, collected across the entire pressure range, show that the peaks associated with As–As stretching have the greatest pressure dependence; the S–As–S bending frequency and the As–S stretching have a much weaker dependence or no variation at all as the pressure increases; this is in excellent agreement with the structural data.


Author(s):  
Laura A. Lallemand ◽  
James G. McCarthy ◽  
Sean McSweeney ◽  
Andrew A. McCarthy

Chlorogenic acids (CGAs) are a group of soluble phenolic compounds that are produced by a variety of plants, includingCoffea canephora(robusta coffee). The last step in CGA biosynthesis is generally catalysed by a specific hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HQT), but it can also be catalysed by the more widely distributed hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT). Here, the cloning and overexpression of HCT fromC. canephorainEscherichia colias well as its purification and crystallization are presented. Crystals were obtained by the sitting-drop technique at 293 K and X-ray diffraction data were collected on the microfocus beamline ID23-2 at the ESRF. The HCT crystals diffracted to better than 3.0 Å resolution, belonged to space groupP42212 with unit-cell parametersa=b= 116.1,c= 158.9 Å and contained two molecules in the asymmetric unit. The structure was solved by molecular replacement and is currently under refinement. Such structural data are needed to decipher the molecular basis of the substrate specifities of this key enzyme, which belongs to the large plant acyl-CoA-dependent BAHD acyltransferase superfamily.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 325
Author(s):  
Sytle Antao

Synchrotron high-resolution powder X-ray diffraction (HRPXRD) and Rietveld structure refinements were used to examine the crystal structure of single phases and intergrowths (either two or three phases) in 13 samples of the helvine-group minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. The helvine structure was refined in the cubic space group P4¯3n. For the intergrowths, simultaneous refinements were carried out for each phase. The structural parameters for each phase in an intergrowth are only slightly different from each other. Each phase in an intergrowth has well-defined unit-cell and structural parameters that are significantly different from the three endmembers and these do not represent exsolution or immiscibility gaps in the ternary solid-solution series. The reason for the intergrowths in the helvine-group minerals is not clear considering the similar radii, identical charge, and diffusion among the interstitial M cations (Zn2+, Fe2+, and Mn2+) that are characteristic of elongated tetrahedral coordination. The difference between the radii of Zn2+ and Mn2+ cations is 10%. Depending on the availability of the M cations, intergrowths may occur as the temperature, pressure, fugacity fS2, and fluid composition change on crystallization. The Be–Si atoms are fully ordered. The Be–O and Si–O distances are nearly constant. Several structural parameters (Be–O–Si bridging angle, M–O, M–S, average <M–O/S>[4] distances, and TO4 rotational angles) vary linearly with the a unit-cell parameter across the series because of the size of the M cation.


2020 ◽  
Vol 56 (2) ◽  
pp. 269-277
Author(s):  
V.E. Sokol’skii ◽  
D.V. Pruttskov ◽  
O.M. Yakovenko ◽  
V.P. Kazimirov ◽  
O.S. Roik ◽  
...  

Anorthite and gehlenite crystalline structure and short-range order of anorthite melt have been studied by X-ray diffraction in the temperature range from room temperature up to ~ 1923 K. The corresponding anorthite and gehlenite phases were identified as well as amorphous component for anorthite samples having identical shape to XRD pattern of the anorthite melt. The structure factor and the radial distribution function of atoms of the anorthite melt were calculated from the X-ray high-temperature experimental data. The partial structural parameters of the short-range order of the melt were reconstructed using Reverse Monte Carlo simulations.


2017 ◽  
Vol 64 (3-4) ◽  
pp. 155-162
Author(s):  
Aleksandra Gorączko ◽  
Andrzej Olchawa

AbstractThe paper presents results of a study on the amount of water associated with the solid phase of the clay water system at the plastic limit. Two model monomineral clays, namely kaolinite, and montmorillonite, were used in the study. The latter was obtained by gravitational sedimentation of Na-bentonite (Wyoming).The calculated mean number of water molecule layers on the external surface of montmorillonite was 14.4, and water in interlayer spaces constituted 0.3 of the water mass at the plastic limit.The number of water layers on the external surface of kaolinite particles was 63, which was related to the higher density of the surface electrical charge of kaolinite compared to that of montmorillonite.The calculations were made on the basis of the external surface area of clays and the basal spacing at the plastic limit measured by an X-ray diffraction test. The external surface area of clays was estimated by measuring sorption at a relative humidity p/p0 = 0.5.


2017 ◽  
Vol 81 (6) ◽  
pp. 1287-1302
Author(s):  
Ferdinando Bosi ◽  
Andrew G. Christy ◽  
Ulf Hålenius

AbstractFour specimens of the roméite-group minerals oxyplumboroméite and fluorcalcioroméite from the Långban Mn-Fe deposit in Central Sweden were structurally and chemically characterized by single-crystal X-ray diffraction, electron microprobe analysis and infrared spectroscopy. The data obtained and those on additional roméite samples from literature show that the main structural variations within the roméite group are related to variations in the content of Pb2+, which is incorporated into the roméite structure via the substitution Pb2+→A2+ where A2+ = Ca, Mn and Sr. Additionally, the cation occupancy at the six-fold coordinated B site, which is associated with the heterovalent substitution BFe3+ + Y☐→BSb5++YO2-, can strongly affect structural parameters.Chemical formulae of the roméite minerals group are discussed. According to crystal-chemical information, the species associated with the name ‘kenoplumboroméite’, hydroxycalcioroméite and fluorcalcioroméite most closely approximate end-member compositions Pb2(SbFe3+)O6☐, Ca2(Sb5+Ti) O6(OH) and (CaNa)Sb2O6F, respectively. However, in accord with pyrochlore nomenclature rules, their names correspond to multiple end-members and are best described by the general formulae: (Pb,#)2(Sb,#)2O6☐, (Ca,#)2(Sb,#)2O6(OH) and (Ca,#)Sb2(O,#)6F, where ‘#’ indicates an unspecified charge-balancing chemical substituent, including vacancies.


2012 ◽  
Vol 488-489 ◽  
pp. 76-81 ◽  
Author(s):  
Subramani Shanmugan ◽  
Mutharasu Devarajan ◽  
Kamarulazizi Ibrahim

Sb layered Te/Cd thin films have been prepared by using Stacked Elemental Layer (SEL) method. The presence of mixed phases (CdTe and Sb2Te3) in the films was confirmed by the x-ray diffraction technique. The calculated structural parameters demonstrated the feasibility of Sb doping via SEL method. The topographical and electrical studies of the synthesized thin films depicted the influence of Sb on both surface morphology and conductivity. The values of conductivity of the annealed films were in between 2 x 10-3 and 175 x 10-2 Scm-2. A desired chemical composition of films was confirmed from spectrum shape analysis using energy dispersive x-ray.


2010 ◽  
Vol 24 (30) ◽  
pp. 5973-5985
Author(s):  
M. GUNES ◽  
H. GENCER ◽  
T. IZGI ◽  
V. S. KOLAT ◽  
S. ATALAY

NiFe 2 O 4 nanoparticles were successfully prepared by a hydrothermal process, and the effect of temperature on them was studied. The particles were annealed at various temperatures ranging from 413 to 1473 K. Studies were carried out using powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, differential thermal analysis, thermogravimetric analysis and a vibrating sample magnetometer. The annealing temperature had a significant effect on the magnetic and structural parameters, such as the crystallite size, lattice parameter, magnetization and coercivity.


Sign in / Sign up

Export Citation Format

Share Document