scholarly journals A COMBINATION DEEP BELIEF NETWORKS AND SHALLOW CLASSIFIER FOR SLEEP STAGE CLASSIFICATION

Kursor ◽  
2017 ◽  
pp. 197
Author(s):  
Intan Nurma Yulita ◽  
Rudi Rosadi ◽  
Sri Purwani ◽  
Rolly Maulana Awangga

In this research, it is proposed to use Deep Belief Networks (DBN) in shallow classifier for the automatic sleep stage classification. The automatic classification is required to minimize Polysomnography examination time because it needs more than two days for analysis manually. Thus the automatic mechanism is required. The Shallow classifier used in this research includes Naïve Bayes (NB), Bayesian Networks (BN), Decision Tree (DT), Support Vector Machines (SVM), and K-Nearest Neighbor (KNN). The results obtained that many methods of the shallow classifier are increasing precision, recall, and F-Measure if they use DBN output as input for classification. Experiments that have been done indicate a significant increase of Naive Bayes after being combined with DBN. The high-level features generated by DBN are proven to be useful in helping Naive Bayes' performance. On the other hand, the combination of KNN with DBN shows a decrease because high-level features of DBN make it harder to find neighbors that optimize the performance of KNN.

Author(s):  
Rajni Rajni ◽  
Amandeep Amandeep

<p>Diabetes is a major concern all over the world. It is increasing at a fast pace. People can avoid diabetes at an early stage without any test. The goal of this paper is to predict the probability of whether the person has a risk of diabetes or not at an early stage. This would lead to having a great impact on their quality of human life. The datasets are Pima Indians diabetes and Cleveland coronary illness and consist of 768 records. Though there are a number of solutions available for information extraction from a huge datasets and to predict the possibility of having diabetes, but the accuracy of their mining process is far from accurate. For achieving highest accuracy, the issue of zero probability which is generally faced by naïve bayes analysis needs to be addressed suitably. The proposed framework RB-Bayes aims to extract the required information with high accuracy that could survive the problem of zero probability and also configure accuracy with other methods like Support Vector Machine, Naive Bayes, and K Nearest Neighbor. We calculated mean to handle missing data and calculated probability for yes (positive) and no (negative). The highest value between yes and no decide the value for the tuple. It is mostly used in text classification. The outcomes on Pima Indian diabetes dataset demonstrate that the proposed methodology enhances the precision as a contrast with other regulated procedures. The accuracy of the proposed methodology large dataset is 72.9%.</p>


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Deny Haryadi ◽  
Rila Mandala

Harga minyak kelapa sawit bisa mengalami kenaikan, penurunan maupun tetap setiap hari karena faktor yang mempengaruhi harga minyak kelapa sawit seperti harga minyak nabati lain (minyak kedelai dan minyak canola), harga minyak mentah dunia, maupun nilai tukar riil antara kurs dolar terhadap mata uang negara produsen (rupiah, ringgit, dan canada) atau mata uang negara konsumen (rupee). Untuk itu dibutuhkan prediksi harga minyak kelapa sawit yang cukup akurat agar para investor bisa mendapatkan keuntungan sesuai perencanaan yang dibuat. tujuan dari penelitian ini yaitu untuk mengetahui perbandingan accuracy, precision, dan recall yang dihasilkan oleh algoritma Naïve Bayes, Support Vector Machine, dan K-Nearest Neighbor dalam menyelesaikan masalah prediksi harga minyak kelapa sawit dalam investasi. Berdasarkan hasil pengujian dalam penelitian yang telah dilakukan, algoritma Support Vector Machine memiliki accuracy, precision, dan recall dengan jumlah paling tinggi dibandingkan dengan algoritma Naïve Bayes dan algoritma K-Nearest Neighbor. Nilai accuracy tertinggi pada penelitian ini yaitu 82,46% dengan precision tertinggi yaitu 86% dan recall tertinggi yaitu 89,06%.


Author(s):  
Wan Nor Liyana Wan Hassan Ibeni ◽  
Mohd Zaki Mohd Salikon ◽  
Aida Mustapha ◽  
Saiful Adli Daud ◽  
Mohd Najib Mohd Salleh

The problem of imbalanced class distribution or small datasets is quite frequent in certain fields especially in medical domain. However, the classical Naive Bayes approach in dealing with uncertainties within medical datasets face with the difficulties in selecting prior distributions, whereby parameter estimation such as the maximum likelihood estimation (MLE) and maximum a posteriori (MAP) often hurt the accuracy of predictions. This paper presents the full Bayesian approach to assess the predictive distribution of all classes using three classifiers; naïve bayes (NB), bayesian networks (BN), and tree augmented naïve bayes (TAN) with three datasets; Breast cancer, breast cancer wisconsin, and breast tissue dataset. Next, the prediction accuracies of bayesian approaches are also compared with three standard machine learning algorithms from the literature; K-nearest neighbor (K-NN), support vector machine (SVM), and decision tree (DT). The results showed that the best performance was the bayesian networks (BN) algorithm with accuracy of 97.281%. The results are hoped to provide as base comparison for further research on breast cancer detection. All experiments are conducted in WEKA data mining tool.


Author(s):  
Ahmed T. Shawky ◽  
Ismail M. Hagag

In today’s world using data mining and classification is considered to be one of the most important techniques, as today’s world is full of data that is generated by various sources. However, extracting useful knowledge out of this data is the real challenge, and this paper conquers this challenge by using machine learning algorithms to use data for classifiers to draw meaningful results. The aim of this research paper is to design a model to detect diabetes in patients with high accuracy. Therefore, this research paper using five different algorithms for different machine learning classification includes, Decision Tree, Support Vector Machine (SVM), Random Forest, Naive Bayes, and K- Nearest Neighbor (K-NN), the purpose of this approach is to predict diabetes at an early stage. Finally, we have compared the performance of these algorithms, concluding that K-NN algorithm is a better accuracy (81.16%), followed by the Naive Bayes algorithm (76.06%).


2016 ◽  
Vol 1 (1) ◽  
pp. 13 ◽  
Author(s):  
Debby Erce Sondakh

Penelitian ini bertujuan untuk mengukur dan membandingkan kinerja lima algoritma klasifikasi teks berbasis pembelajaran mesin, yaitu decision rules, decision tree, k-nearest neighbor (k-NN), naïve Bayes, dan Support Vector Machine (SVM), menggunakan dokumen teks multi-class. Perbandingan dilakukan pada efektifiatas algoritma, yaitu kemampuan untuk mengklasifikasi dokumen pada kategori yang tepat, menggunakan metode holdout atau percentage split. Ukuran efektifitas yang digunakan adalah precision, recall, F-measure, dan akurasi. Hasil eksperimen menunjukkan bahwa untuk algoritma naïve Bayes, semakin besar persentase dokumen pelatihan semakin tinggi akurasi model yang dihasilkan. Akurasi tertinggi naïve Bayes pada persentase 90/10, SVM pada 80/20, dan decision tree pada 70/30. Hasil eksperimen juga menunjukkan, algoritma naïve Bayes memiliki nilai efektifitas tertinggi di antara lima algoritma yang diuji, dan waktu membangun model klasiifikasi yang tercepat, yaitu 0.02 detik. Algoritma decision tree dapat mengklasifikasi dokumen teks dengan nilai akurasi yang lebih tinggi dibanding SVM, namun waktu membangun modelnya lebih lambat. Dalam hal waktu membangun model, k-NN adalah yang tercepat namun nilai akurasinya kurang.


2018 ◽  
Vol 14 (2) ◽  
pp. 261
Author(s):  
Lila Dini Utami

At this time the freedom to express opinions in oral and written forms about everything is very easy. This activity can be used to make decisions by some business people. Especially by service providers, such as hotels. This will be very useful in the development of the hotel business itself. But the review data must be processed using the right algorithm. So this study was conducted to find out which algorithms are more feasible to use to get the highest accuracy. The methods used are Naïve Bayes (NB), Support Vector Machine (SVM), and k-Nearest Neighbor (k-NN). From the process that has been done, the results of Naïve Bayes accuracy are 71.50% with the AUC value is 0.500, Support Vector Machine is 72.50% with the AUC value is 0.936 and the accuracy results if using the k-Nearest Neighbor algorithm is 75.00% with the AUC value is 0.500. The use of the k-Nearest Neighbor algorithm can help in making more appropriate decisions for hotel reviews at this time.


2015 ◽  
Vol 250 ◽  
pp. 94-105 ◽  
Author(s):  
Tarek Lajnef ◽  
Sahbi Chaibi ◽  
Perrine Ruby ◽  
Pierre-Emmanuel Aguera ◽  
Jean-Baptiste Eichenlaub ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document