scholarly journals Search for streptomycetes with antagonistic activity to the aggressive Fusarium sp. strain AC

Author(s):  
E. V. Tovstik ◽  
A. V. Bakulina

The antagonistic activity of 126 Streptomyces strains against the fungus Fusarium sp. AC was studied. The greatest extent of mycelium growth was inhibited by S. geldanamicininus 3K9, which produces validamycin A.

2018 ◽  
Vol 5 (2) ◽  
pp. 224
Author(s):  
Dewa Ayu Andriastini ◽  
Yan Ramona ◽  
Meitini Wahyuni Proborini

A research on in vitro inhibition of fungal antagonists, isolated from dragon fruit plantation in Sembung village, Bali, on Fusarium sp. (the disease causative agent of dragon fruit plant) was conducted with the main objective to investigate the effectiveness of these fungal antagonists to inhibit the in vitro growth of the pathogen. Dual assay method was applied in this experiment. The results showed that three potential fungal antagonists were successfully isolated in this research and they were identified as Trichoderma harzianum, Aspergillus niger, dan Paecilomyces lilacinus. All these fungal antagonists showed antagonistic activity against Fusarium sp. which was statistically significant (p<0.05) when compared to control. This indicated that all antagonist isolates were potential to be developed as biocontrol agent candidates.


All Life ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Fatma Khuseib Hamed Al-Rashdi ◽  
Abdullah Mohammed Al-Sadi ◽  
Bahja Z. Al-Riyamy ◽  
Sajeewa S. N. Maharachchikumbura ◽  
Huda Khalfan Al-Ruqaishi ◽  
...  

2019 ◽  
Vol 18 (4) ◽  
pp. 53-62
Author(s):  
P Asiya ◽  
PR Sreeraj ◽  
Joseph John ◽  
PB Ramya

Plant protection is an important area which needs attention since most of the hazardous inputs added into the agricultural system are in the form of plant protection chemicals. Botanicals possess a variety of promising properties which make it a better biocontrol agent. The objectives of the present study were to isolate Fusarium sp. from soil and to check the effect of botanicals against this fungal pathogen in-vitro. The antagonistic activity of botanicals was studied by co-inoculation with the Fusarium sp. isolated from rhizosphere soil. In poison food technique, the botanicals in different concentration, showed decrease in the growth of the fungal pathogen. Maximum inhibition was observed in 10% Azadiracta sp. with 64% inhibition followed by 5% Azadiracta sp. with 57.8%


Author(s):  
ERIYANTO YUSNAWAN ◽  
ALFI INAYATI ◽  
YULIANTORO BALIADI

Abstract. Yusnawan E, Inayati A, Baliadi Y. 2019. Isolation of antagonistic fungi from rhizospheres and its biocontrol activity against different isolates of soil borne fungal pathogens infected legumes. Biodiversitas 20: 2048-2054. Soilborne diseases caused by Rhizoctonia solani and Fusarium sp. are biotic limits for legume production. Biological controls offer environmental friendly control for these pathogens. This study aimed to isolate and screen Trichoderma from different rhizospheres and to obtain effective Trichoderma isolates to suppress in vitro growth of the soil borne pathogens. The antagonistic inhibitory activity was performed by dual culture method. Seven out of forty indigenous Trichoderma isolates collected from East Java, Indonesia effectively suppressed the growth of different fungal isolates, namely Rhizoctonia solani (R.s1), R. solani (R.s2) as well as Fusarium sp. which infected soybean and mung bean. In vitro study showed different suppression of the pathogens on dual culture tests. The seven isolates inhibited the growth of R. solani (R.s1), R.solani (R.s2) and Fusarium sp. ranging from 90.0 to 99.6%, 72.8 to 82.4%, and 67.9 to 90.8%, respectively. Isolate origin and genetic variability of Trichoderma played an important role in the antagonistic activity. The fast-growing of selected Trichoderma showed their abilities for space occupation and nutrition competition, which involved in the antagonistic activity. The mycelial growth of Trichoderma over pathogens showed hyperparasitism mechanism. In addition, coiling of Trichoderma over hyphal pathogens was observed during microscopic observation. The seven Trichoderma isolates, therefore, are promising as biological control agents against the soil borne fungi infected legumes.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Pooja Verma ◽  
Priyanka Chandra ◽  
Kailash Prajapat ◽  
Awtar Singh ◽  
Parul Sundha ◽  
...  

The antagonistic potential of bacteria is being applied to biocontrol the infectious diseases caused by pathogenic fungi in plants that are one of the major threats to the growth and productivity of crop plants. In the present study, bacterial strains were isolated from soil samples collected from the rhizosphere of Sorghum (Sorghum bicolor) and Wheat (Triticum aestivum). Microscopic analysis revealed that all three bacterial isolates were Gram-positive, rod-shaped and spore-forming. The isolates Bacillus subtilis BP171 and Bacillus amyloliquefaciens BP124 demonstrated salt tolerance up to 12% while Bacillus subtilis BP67 tolerated up to 10% of NaCl. All the three strains were screened against seven test pathogenic fungi like Bipolaris sorokiniana, Fusarium oxysporum, Aspergillus sp., Penicillium sp., Rhizoctonia solani, Aspergillus niger, and Fusarium sp. for their antagonistic activity. BP124 was found to be the most potent in comparison to BP67 and BP171. Bacillus amyloliquefaciens BP124 demonstrated significantly highest (p<.0001) inhibition percentage against Fusarium sp., (61%) and Fusarium oxysporum (60%). The optimization of various parameters like pH, temperature, inoculum size, agitation, carbon sources, and nitrogen sources was carried out to enhance the antagonistic potential of bacterial isolates. The results revealed that the bacterial isolates were able to demonstrate significantly highest (p<.0001) antagonistic potential when inoculum size required for the growth was 1ml, agitation rate at 150 rpm, while the medium of pH at 7.0 and 30o C incubation temperature. Starch as carbon source and peptone as nitrogen source supported significantly highest (p<.0001) antagonistic activity against all the fungal pathogens for all the bacterial isolates. Therefore, the study showed that appropriate and optimum fermentation conditions can be of great importance in enhancing the antagonistic potential of bacterial isolates.


2002 ◽  
Vol 48 (9) ◽  
pp. 841-847 ◽  
Author(s):  
Vladimir Vujanovic ◽  
Chantal Hamel ◽  
Suha Jabaji-Hare ◽  
Marc St-Arnaud

A new selective myclobutanil agar medium for the detection of Fusarium species is proposed. Ten media formulations based on various selective agents (pentachloronitrobenzene (PCNB), Rose Bengal, malachite green, sodium hypochlorite, captan, benomyl, chlorotalonil, myclobutanil, thiram, and cupric sulfate) were compared. First, mycelium growth and colony appearance of Alternaria alternata, Aspergillus flavus, Cladosporium cladosporioides, Epicoccum nigrum,Fusarium sp., Fusarium solani, Fusarium moniliforme, Fusarium oxysporum f.sp. dianthi, Penicillium sp., and Trichoderma viride isolates were compared. Second, the ability of the different media to isolate and enumerate fusaria from asparagus fields was evaluated. The myclobutanil-based medium showed the highest selectivity to Fusarium spp. growth but required a slightly longer incubation time (>5 d) than peptone–pentachloronitrobenzene-based agar (PPA) (< 5 d). PPA allowed a faster fusaria growth but also permited the growth of other moulds. The other media were less selective and did not allow to isolate fusaria or to differenciate them from other growing fungi.Key words: selective medium, myclobutanil, Fusarium, soil, Asparagus.


Sign in / Sign up

Export Citation Format

Share Document