scholarly journals ANTAGONISTIC POTENTIAL OF SALT TOLERANT BACTERIA AND OPTIMIZATION OF THEIR CULTURE CONDITIONS FOR ENHANCEMENT OF THE ACTIVITY

2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Pooja Verma ◽  
Priyanka Chandra ◽  
Kailash Prajapat ◽  
Awtar Singh ◽  
Parul Sundha ◽  
...  

The antagonistic potential of bacteria is being applied to biocontrol the infectious diseases caused by pathogenic fungi in plants that are one of the major threats to the growth and productivity of crop plants. In the present study, bacterial strains were isolated from soil samples collected from the rhizosphere of Sorghum (Sorghum bicolor) and Wheat (Triticum aestivum). Microscopic analysis revealed that all three bacterial isolates were Gram-positive, rod-shaped and spore-forming. The isolates Bacillus subtilis BP171 and Bacillus amyloliquefaciens BP124 demonstrated salt tolerance up to 12% while Bacillus subtilis BP67 tolerated up to 10% of NaCl. All the three strains were screened against seven test pathogenic fungi like Bipolaris sorokiniana, Fusarium oxysporum, Aspergillus sp., Penicillium sp., Rhizoctonia solani, Aspergillus niger, and Fusarium sp. for their antagonistic activity. BP124 was found to be the most potent in comparison to BP67 and BP171. Bacillus amyloliquefaciens BP124 demonstrated significantly highest (p<.0001) inhibition percentage against Fusarium sp., (61%) and Fusarium oxysporum (60%). The optimization of various parameters like pH, temperature, inoculum size, agitation, carbon sources, and nitrogen sources was carried out to enhance the antagonistic potential of bacterial isolates. The results revealed that the bacterial isolates were able to demonstrate significantly highest (p<.0001) antagonistic potential when inoculum size required for the growth was 1ml, agitation rate at 150 rpm, while the medium of pH at 7.0 and 30o C incubation temperature. Starch as carbon source and peptone as nitrogen source supported significantly highest (p<.0001) antagonistic activity against all the fungal pathogens for all the bacterial isolates. Therefore, the study showed that appropriate and optimum fermentation conditions can be of great importance in enhancing the antagonistic potential of bacterial isolates.

2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Rury Eryna Putri ◽  
Nisa Rachmania Mubarik ◽  
Laksmi Ambarsari ◽  
Aris Tri Wahyudi

Abstract. Putri RE, Mubarik NR, Ambarsari L, Wahyudi AT. 2021. Antagonistic activity of glucanolytic bacteria Bacillus subtilis W3.15 against Fusarium oxysporum and its enzyme characterization. Biodiversitas 22: 4067-4077. Biocontrol of Fusarium oxysporum, a phytopathogenic fungus that causes plant wilt can be approached with cell-wall degrading enzymes such as ?-glucanase. The aim of this study was to evaluate the prospective ability in glucanase production from several soil bacterial isolates and to characterize its ?-glucanase activity of ammonium sulfate precipitation, and to determine its antifungal activity against F. oxysporum in vitro. Twenty bacterial isolates were screened qualitatively and quantitatively as ?-glucanase producers. The results showed that the prospective isolate W3.15 can produce ?-glucanase on glucan agar as the selection medium. From 16S rRNA sequences identification, the isolate belongs to the genus Bacillus, closely related to Bacillus subtilis. The enzyme activity of the ammonium sulfate fraction of isolate W3.15 is optimum at a pH of 7 and temperature range of 60-80oC. B. subtilis W3.15 exhibits high inhibition against the mycelial growth of F. oxysporum and significantly reduced fungal biomass.


2021 ◽  
Vol 5 (1) ◽  
pp. 50-57
Author(s):  
Dewa Gede Wiryangga Selangga ◽  
Listihani

This study aims to determine the screening of endophytic bacteria isolatd from Mimosa pudica in Bali Island. This research was conducted from September 2020 to January 2021 at the Plant Disease Laboratory, Faculty of Agriculture, Udayana University, Denpasar. Isolation of endophytic bacteria was carried out by taking a sample of the root of the shy daughter plant which was then washed and dried on a tissue.. Hypersensitivity test followed Klement and Goodman (1967) by growing bacteria in a petri dish containing 100% TSA and NA.Tests were carried out by growing endophytic bacteria in 100% NA and TSA media.  Isolation of the roots of the Mimusa pudica plant resulted in 43 isolates. The resulting isolates then passed the hypersensitive test so that 27 isolates were selected. A total of 27 isolates were then tested for hemolysis on blood agar. The final results obtained were 12 endophytic bacterial isolates which were then used in the next practicum. The results showed that the endophytic bacterial isolates were not able to inhibit the fusarium sp. and Phytophthora sp., when using the inhibition percentage formula. This is because the average diameter of the pathogenic fungi colonies in the control treatment (R1) with the average diameter of the pathogenic fungi colonies in the endophytic treatment (R2) has the same size, so that when calculated by the percentage inhibition formula it results in the number 0 which means no. there is a zone of inhibition.


2021 ◽  
Author(s):  
Hilda Karim ◽  
Andi Asmawati ◽  
Oslan Jumadi

Abstract Tuber rot disease due to phytopathogen Fusarium oxysporum f. sp. cepae (Foc) infection is one of the main factors causing the decreasing amount of global shallot production. This study aims to find bacteria and fungi candidates which have Foc antagonistic activity through in vitro tests using dual culture techniques. A total of five bacterial isolates and three fungal isolates isolated from the rhizosphere of healthy onion plants showed the ability to inhibit Foc growth. B1 and B4 bacterial isolates had an average inhibitory capability of 65.93% and 72.27% respectively. Whereas C1 and C2 fungal isolates have the ability to inhibit the growth of Foc by as much as 74.82% and 67.76% respectively. The four tested microbial isolates were able to significantly inhibit Foc activity in vitro based on the ANOVA test, with values α = 0.05, and n = 3. Molecular analysis based on 16S-rRNA markers showed bacterial isolates B1 and B4 have an evolutionary relationship with B. subtilis. Whereas fungi C1 and C2 have evolutionary relationships with Aspergillus tubingensis and Trichoderma asperellum respectively, based on internal transcribed spacer (ITS) gene markers. The results of this study can be used to develop indigenous microbial consortiums as biological control agents for phytopathogenic fungi Fusarium oxysporum f. sp. cepae (Foc) on shallots.


2017 ◽  
Vol 35 (No. 2) ◽  
pp. 113-121
Author(s):  
Wang Junhua ◽  
Zhao Shuangzhi ◽  
Qiu Jiying ◽  
Zhou Qingxin ◽  
Li Xiaoyong ◽  
...  

Bacillus amyloliquefaciens NCPSJ7 could secrete extracellular antimicrobial substances, showing potent antifungal activities. An active peptide AFP3 was isolated from the fermentation supernatant. After chromatography, the purified peptide was tested for the fungicidal activity, molecular mass, and stability. The results indicated that the peptide with a molecular mass of around 3.3 kDa, showed discernible inhibition of the pathogen Fusarium oxysporum f. sp. niveum with the minimum fungicidal concentration of 31 µg/ml. It also exhibited excellent inhibition of some representative pathogenic fungi at a low concentration. Moreover, the peptide remained active at a wide range of temperatures and pH. Ion Na<sup>+</sup> may even increase the antifungal activities. At the same time, the peptide could well tolerate the treatment with trypsin. Electron microscopy was used to investigate the effect of the peptide on the pathogens. The peptide inhibited the growth of pathogens by disrupting the integrity of the hyphal membranes, resulting in their lysis. The potent fungicidal activities and stability made the peptide be a candidate for a biopreservative.


2002 ◽  
Vol 48 (9) ◽  
pp. 772-786 ◽  
Author(s):  
Annette Krechel ◽  
Annekathrin Faupel ◽  
Johannes Hallmann ◽  
Andreas Ulrich ◽  
Gabriele Berg

To study the effect of microenvironments on potato-associated bacteria, the abundance and diversity of bacteria isolated from the rhizosphere, phyllosphere, endorhiza, and endosphere of field grown potato was analyzed. Culturable bacteria were obtained after plating on R2A medium. The endophytic populations averaged 103and 105CFU/g (fresh wt.) for the endosphere and endorhiza, respectively, which were lower than those for the ectophytic microenvironments, with 105and 107CFU/g (fresh wt.) for the phyllosphere and rhizosphere, respectively. The composition and richness of bacterial species was microenvironment-dependent. The occurrence and diversity of potato-associated bacteria was additionally monitored by a cultivation-independent approach using terminal restriction fragment length polymorphism analysis of 16S rDNA. The patterns obtained revealed a high heterogeneity of community composition and suggested the existence of microenvironment-specific communities. In an approach to measure the antagonistic potential of potato-associated bacteria, a total of 440 bacteria was screened by dual testing for in vitro antagonism towards the soilborne pathogens Verticillium dahliae and Rhizoctonia solani. The proportion of isolates with antagonistic activity was highest for the rhizosphere (10%), followed by the endorhiza (9%), phyllosphere (6%), and endosphere (5%). All 33 fungal antagonists were characterized by testing their in vitro antagonistic mechanisms, including their glucanolytic, chitinolytic, pectinolytic, cellulolytic, and proteolytic activity, and by their BOX-PCR fingerprints. In addition, they were screened for their biocontrol activity against Meloidogyne incognita. Overall, nine isolates belonging to Pseudomonas and Streptomyces species were found to control both fungal pathogens and M. incognita and were therefore considered as promising biological control agents. Key words: biocontrol, antagonistic potential, plant-associated bacteria.


2017 ◽  
Vol 18 (4) ◽  
pp. 1377-1384
Author(s):  
FAJAR RAHMAH NURAINI ◽  
RATNA SETYANINGSIH ◽  
ARI SUSILOWATI

Nuraini FR, Setyaningsih R, Susilowati A. 2017. Screening and characterization of endophytic fungi as antagonistic agents toward Fusarium oxysporum on eggplant (Solanum melongena). Biodiversitas 18: 1377-1384. Fusarium oxysporum is a soil borne pathogenic fungus that causes wilt disease in members of the family Solanaceae including the eggplant (Solanum melongena L.). One approach to resolving the problem of wilt disease in eggplant is to find endophytic microbes with antagonistic activity against F. oxysporum. The study reported here aimed to isolate such endophytic fungal antagonists from growing eggplants, to determine their antagonistic mechanisms, and to identify them. Samples of pathogenic fungi from diseased plants, assumed to be F. oxysporum, were obtained from the Laboratory of Plant Pests and Diseases of the Faculty of Agriculture, Universitas Sebelas Maret Surakarta. These were used to evaluate the antagonistic potential of endophytic fungi obtained from healthy eggplants in Dawung Village, Matesih, Karanganyar, Central Java. Specimens of various plant parts were collected from the healthy eggplants. The surfaces of these samples were sterilized for four minutes to remove contaminants, and then crushed excisions were cultured on a potato dextrose agar (PDA) medium. Antagonistic tests between endophytic and pathogenic fungi used the agar plug diffusion technique. Identification of fungi isolates was carried out on the basis of morphological characteristics. Six endophytic fungi isolated had antagonist activity against F. oxysporum. The antagonistic mechanism of FEB1, FEB2, FEB5 and FED1 was competition; FED2 was antibiosis, and FED3 was parasitism. Based on their morphological characteristics, FEB2, FEB5 and FED3 were identified as Helicomyces spp.; FEB1 was a Rhizopus sp.; FED1 was a Mucor sp.; and FED2 was a species of Penicillium.


2019 ◽  
Vol 12 (2) ◽  
pp. 124-132
Author(s):  
Nia Safitri ◽  
Atria Martina ◽  
Rodesia Mustika Roza

Tanaman budi daya merupakan tanaman yang sering diserang oleh cendawan pathogen, sehingga mengakibatkan penurunan populasi dan produksi tanaman. Pengendalian hayati dengan cendawan antagonis merupakan salah satu metode yang paling efektif dan lebih ramah lingkungan dalam menekan pertumbuhan patogen tanaman. Penelitian ini bertujuan untuk menguji aktivitas antagonis cendawan isolat lokal Riau terhadap beberapa cendawan patogen pada tanaman budi daya. Uji antagonis dilakukan secara in vitro dengan metode dual culture menggunakan lima belas cendawan isolat lokal Riau terhadap Fusarium oxysporum f.sp. lycopersici, Ganoderma philippii, G. boninense, Rigidoporus microporus dan Colletotrichum sansevieria. Hasil penelitian menunjukkan bahwa Trichoderma sp. PNE 4 memiliki aktivitas antagonis tertinggi dan isolat FER C1 serta isolat LLB07 hanya memiliki aktivitas antagonis yang tinggi dalam menekan pertumbuhan cendawan patogen. Trichoderma sp. PNE 4 mampu menghambat pertumbuhan miselium F. oxysporum sebesar 85,30%, G. Philippii (100%), G. boninense (100%), dan C. sansevieria (100%). Isolat FER C1 hanya menghambat R. Microporus (50,39%) dan isolat LLB07 menghambat G. philippii (52,20%). Trichoderma sp. PNE 4 merupakan cendawan uji yang terpilih sebagai cendawan antagonis, karena memiliki kemampuan daya hambat  >70%.Abstract Cultivated plants are often attacked by pathogenic fungi resulting in a decline of population and crop production. Biocontrol with antagonistic fungi is one of the most effective and environmentally friendly methods in suppressing the growth of plant pathogens. This study aims to examine the antagonistic activity of local isolates fungi Riau against some pathogenic fungi on cultivated plants. The antagonistic test was performed in vitro by dual culture method using fifteen local isolates fungal Riau against Fusarium oxysporum f.sp. lycopersici, Ganoderma philippii, G. boninense, Rigidoporus microporus and Colletotrichum sansevieria. The results showed that Trichoderma sp. PNE 4 isolate exhibited highest activites and  FER C1 and LLB07 isolates exhibited high activities suppressed the growth of the fungal pathogen. Trichoderma sp. PNE 4 isolate inhibited mycelial growth F. oxysporum (85.30%), G. philippii (100%), G. boninense (100%) and C. sansevieria (100%). FER C1 isolate only inhibited R. microporus (50.39%), and LLB07 isolate inhibited G. philippii (52.20%). Trichoderma sp. PNE 4 isolate is test isolates as fungal antagonistic.


2019 ◽  
Vol 34 (2) ◽  
pp. 97-102
Author(s):  
Ivana Potocnik ◽  
Svetlana Milijasevic-Marcic ◽  
Olja Stanojevic ◽  
Tanja Beric ◽  
Slavisa Stankovic ◽  
...  

The study aimed to isolate potential biocontrol agents from mushroom substrate that could serve as an alternative to toxic chemicals commonly used for disease control in mushroom production. The antagonistic potential of ten native Bacillus subtilis strains against the causal agents of green mould disease of oyster mushroom, Trichoderma pleuroti and Trichoderma pleuroticola, was evaluated. The antagonistic potential of Bacillus spp. strains was quantified in vitro based on dual cultivation with the pathogen. Growth inhibition of T. pleuroti ranged from 54.44% to 62.22% and no significant differences in antagonistic activity were found between the tested B. subtilis strains. Inhibition of T. pleuroticola was slightly higher, ranging from 55.56% to 69.62% and B. subtilis strain B-358 induced the highest growth inhibition. This research confirmed mushroom substrate to be a good source of antagonistic microorganisms with potentials for use in biological control of green mould in oyster mushroom production.


2019 ◽  
pp. 49-52
Author(s):  
O. V. Doroshchuk ◽  
J. N. Kalatskaja ◽  
N. A. Laman ◽  
V. V. Minkova ◽  
M. N. Mandrik-Litvinkovich

Primal problem of vegetable growing is constant supply of the population with all types of vegetables, including green cultures. Green cultures are vegetables that have high nutritional value and precocity. However they often are infected by phytopathogenic microorganisms already at initial stages of ontogenesis at cultivation in closed soil conditions. It leads to emergence of disjointed shoots, deterioration of growth and development of plants and loss of quality. Now in the Republic of Belarus a number of biological substances on the basis of bacteria Bacillus was developed. They are used against diseases of plants of mushroom and bacterial etiology. However there is not information about influence of bacteria on quality of products of green cultures. The aim of the work was studying of influence of two strains of bacteria Bacillus that were introduced in peat substrate on efficiency and quality of lettuce. Two strains of bacteria Bacillus were used in the work. They were selected from the soil. The strains are Bacillus subtilis M9/6 and Bacillus amyloliquefaciens 23TM that have high antagonistic activity to a wide range of phytopathogens. Cultivation of plants carried out in containers of 250 ml under light installations with illuminating intensity 13-15 thousand luxury and lasting irradiating of 14 hours before technical ripeness of lettuce. It was established that the application of strain Bacillus subtilis M9/6 (in concentration 106 cells/ml, 10 ml/l of substrate) and the strain Bacillus amyloliquefaciens 23TM (5 ml/l of substrate) in substrate before sowing increased nutrition value of lettuce. Dry matter content, water-soluble carbohydrates (mono - and disaccharides) content and vitamin C content increased. The bacterial strain B. amyloliquefaciens 23TM also promoted accumulation of vitamin B2. The content of nitrates in lettuce leaves decreased on 50,3% and 39,1%, respectively. It was shown that the application of bacteria in substrate before sowing of crop has a greater influence on quality of lettuce, than watering of shoots.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7478 ◽  
Author(s):  
Mohamad Syazwan Ngalimat ◽  
Raja Noor Zaliha Raja Abd. Rahman ◽  
Mohd Termizi Yusof ◽  
Amir Syahir ◽  
Suriana Sabri

Bacteria are present in stingless bee nest products. However, detailed information on their characteristics is scarce. Thus, this study aims to investigate the characteristics of bacterial species isolated from Malaysian stingless bee, Heterotrigona itama, nest products. Honey, bee bread and propolis were collected aseptically from four geographical localities of Malaysia. Total plate count (TPC), bacterial identification, phenotypic profile and enzymatic and antibacterial activities were studied. The results indicated that the number of TPC varies from one location to another. A total of 41 different bacterial isolates from the phyla Firmicutes, Proteobacteria and Actinobacteria were identified. Bacillus species were the major bacteria found. Therein, Bacillus cereus was the most frequently isolated species followed by Bacillus aryabhattai, Bacillus oleronius, Bacillus stratosphericus, Bacillus altitudinis, Bacillus amyloliquefaciens, Bacillus nealsonii, Bacillus toyonensis, Bacillus subtilis, Bacillus safensis, Bacillus pseudomycoides, Enterobacter asburiae, Enterobacter cloacae, Pantoea dispersa and Streptomyces kunmingensis. Phenotypic profile of 15 bacterial isolates using GEN III MicroPlate™ system revealed most of the isolates as capable to utilise carbohydrates as well as amino acids and carboxylic acids and derivatives. Proteolytic, lipolytic and cellulolytic activities as determined by enzymatic assays were detected in Bacillus stratosphericus PD6, Bacillus amyloliquefaciens PD9, Bacillus subtilis BD3 and Bacillus safensis BD9. Bacillus amyloliquefaciens PD9 showed broad-spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria in vitro. The multienzymes and antimicrobial activities exhibited by the bacterial isolates from H. itama nest products could provide potential sources of enzymes and antimicrobial compounds for biotechnological applications.


Sign in / Sign up

Export Citation Format

Share Document