scholarly journals MATHEMATICAL MODELING OF THE CRYSTAL STRUCTURE OF PEROVSKITE-LIKE MATERIALS

Author(s):  
Polina Sechenykh

The paper presents the calculation of the metric parameters of crystalline compounds according to a given chemical formula and a space symmetry group. The structures of perovskite and double perovskite are considered.

Author(s):  
Vladimir V. Sharutin ◽  
Olga K. Sharutina ◽  
Natalya M. Tarasova ◽  
Evgeniya V. Lobanova ◽  
Pavel V. Andreev

Triphenylbut-2-enyl- (1a) and triphenylmetoxymethylphosphonium (1b) hexachlorozirconates have been synthesized by the reactions of zirconium tetrachloride with the triphenylalkylphosphonium chlorides in acetonitrile for the first time and characterized by the IR, NMR spectroscopy and X-ray analysis. The most intensive bands in IR spectra correspond to the valence vibrations of the CAr-H and the СAr-СAr bonds in the triphenylalkylphosphonium cations. The splitting of carbon atoms signals is observed due to the presence of  13C – 31P coupling. SSCC for carbon atoms directly connected with phosphorus are about 48–85 Hz. According to the X-Ray data, compound 1a crystallizes in the monoclinic crystal lattice (the P21/c space symmetry group). Hexachlorozirconate 1b forms the triclinic crystals belong to the P-1 space symmetry group. Crystals of compound 1a is characterized by the less dense molecular packing in the crystal lattice in comparison with compound 1b. Calculated densities for the structures 1a,b are 1.355 g/cm3 and 1.466 g/сm3, respectively. Structural organization of the complexes in crystals is caused by the formation of hydrogen bonds between chlorine atoms of the anion and hydrogens of phenyl and alkyl groups of the cations. The phosphorus atoms in the triphenylalkylphosphonium cations have distorted tetrahedral coordination (CPC 107.01(4)°-114.10(6)°  for 1а, 107.38(9)°-112.06(7)° for 1b, the P-С bonds are 1.790(14)-1.865(14) Å for 1а, 1.7838(12)-1.8293(18) Å for 1b). In centrosymmetric octahedral anions [ZrCl6]2− (trans-ClZrCl 180°) the Zr-Cl distances are 2.4654(15)-2.4952(17) Å for 1а and 2.4641(14)-2.4711(12) Å for 1b.


2022 ◽  
Vol 130 (1) ◽  
pp. 104
Author(s):  
Е.П. Чукалина ◽  
А. Яблуновский ◽  
И.А. Гудим

Iron borates NdFe3(BO3)4 and SmFe3(BO3)4 activated with 1% erbium, with a huntite structure (space symmetry group R32) were investigated by the method of erbium spectroscopic probe. From an analysis of the temperature dependence of the transmission spectra in the region of the 4I15/2→4I13/2 transition in the Er3+ ion, it was found that both studied compounds order antiferromagnetically at TN ≈ 33 K into an easy-plane magnetic structure. No other phase transitions were found.


Author(s):  
Z. Cheng ◽  
Y. Cheng ◽  
L. Guo ◽  
D. Xu

AbstractThe crystal structure of the title compound D(H)LAP with chemical formula (D


1993 ◽  
Vol 57 (386) ◽  
pp. 157-164 ◽  
Author(s):  
Mitsuyoshi Kimata

AbstractThe crystal structure of KBSi3O8 (orthorhombic, Pnam, with a = 8.683(1), b = 9.253(1), c = 8.272(1) Å,, V = 664.4(1) Å3, Z = 4) has been determined by the direct method applied to 3- dimensional rcflection data. The structure of a microcrystal with the dimensions 20 × 29 × 37 μm was refined to an unweightcd residual of R = 0.031 using 386 non-zero structure amplitudes. KBSi3O8 adopts a structure essentially different from recdmergneritc NaBSi3O8, with the low albite (NaAlSi3O8) structure, and isotypic with danburite CaB2Si2Os which has the same topology as paracelsian BaAl2Si2O8. The chenfical relationship between this sample and danburitc gives insight into a new coupled substitution; K+ + Si4+ = Ca2+ + B3+ in the extraframework and tetrahedral sites. The present occupancy refinement revealed partial disordering of B and Si atoms which jointly reside in two kinds of general equivalent points, T(1) and T(2) sites. Thus the expanded crystal-chemical formula can be written in the form K(B0.44Si0.56)2(B0.06Si0.94)2O8The systematic trend among crystalline compounds with the M+T3+T4+3O8 formula suggests that they exist in one of four structural types; the feldspar structures with T3+/T4+ ordered and/or disordered forms, and the paracelsian and the hollandite structures.


2017 ◽  
Vol 28 (19) ◽  
pp. 14156-14162 ◽  
Author(s):  
Huiling Chen ◽  
Chao Xing ◽  
Jianzhu Li ◽  
Hengyang Qiao ◽  
Jun Yang ◽  
...  

2005 ◽  
Vol 631 (11) ◽  
pp. 2127-2130 ◽  
Author(s):  
L. Ortega-San Martín ◽  
J. P. Chapman ◽  
G. Cuello ◽  
J. González-Calbet ◽  
M. I. Arriortua ◽  
...  

Author(s):  
Gennady V. Bazuev ◽  
Alexander E. Teplykh ◽  
Alexander V. Korolev ◽  
Evgeny G. Gerasimov ◽  
Pavel B. Terentev

Sign in / Sign up

Export Citation Format

Share Document