scholarly journals The r-Dowling Numbers and Matrices Containing r-Whitney Numbers of the Second Kind and Lah Numbers

2019 ◽  
Vol 12 (3) ◽  
pp. 1122-1137
Author(s):  
Roberto Bagsarsa Corcino ◽  
Charles Montero ◽  
Maribeth Montero ◽  
Jay Ontolan

This paper derives another form of explicit formula for $(r,\beta)$-Bell numbers using the Faa di Bruno's formula and certain identity of Bell polynomials of the second kind. This formula is expressed in terms  of the $r$-Whitney numbers of the second kind and the ordinary Lah numbers. As a consequence, a relation between $(r,\beta)$-Bell numbers and the sums of row entries of the product of two matrices containing the $r$-Whitney numbers of the second kind and the ordinary Lah numbers is established.  Moreover, a $q$-analogue of the explicit formula is obtained.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mahid M. Mangontarum ◽  
Amila P. Macodi-Ringia ◽  
Normalah S. Abdulcarim

More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula, and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities are also investigated and presented. We show that the properties obtained are generalizations of some of the known results involving the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Lee-Chae Jang ◽  
Hyunseok Lee ◽  
Han-Young Kim

AbstractThe nth r-extended Lah–Bell number is defined as the number of ways a set with $n+r$ n + r elements can be partitioned into ordered blocks such that r distinguished elements have to be in distinct ordered blocks. The aim of this paper is to introduce incomplete r-extended Lah–Bell polynomials and complete r-extended Lah–Bell polynomials respectively as multivariate versions of r-Lah numbers and the r-extended Lah–Bell numbers and to investigate some properties and identities for these polynomials. From these investigations we obtain some expressions for the r-Lah numbers and the r-extended Lah–Bell numbers as finite sums.


2021 ◽  
Vol 14 (1) ◽  
pp. 65-81
Author(s):  
Roberto Bagsarsa Corcino ◽  
Jay Ontolan ◽  
Maria Rowena Lobrigas

In this paper, a q-analogue of r-Whitney-Lah numbers, also known as (q,r)-Whitney-Lah number, denoted by $L_{m,r} [n, k]_q$ is defined using the triangular recurrence relation. Several fundamental properties for the q-analogue are established such as vertical and horizontal recurrence relations, horizontal and exponential generating functions. Moreover, an explicit formula for (q, r)-Whitney-Lah number is derived using the concept of q-difference operator, particularly, the q-analogue of Newton’s Interpolation Formula (the umbral version of Taylor series). Furthermore, an explicit formula for the first form (q, r)-Dowling numbers is obtained which is expressed in terms of (q,r)-Whitney-Lah numbers and (q,r)-Whitney numbers of the second kind.


2017 ◽  
Vol 15 (1) ◽  
pp. 1606-1617 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Gwan-Woo Jang ◽  
Lee Chae Jang

AbstractIn 1859, Cayley introduced the ordered Bell numbers which have been used in many problems in number theory and enumerative combinatorics. The ordered Bell polynomials were defined as a natural companion to the ordered Bell numbers (also known as the preferred arrangement numbers). In this paper, we study Fourier series of functions related to higher-order ordered Bell polynomials and derive their Fourier series expansions. In addition, we express each of them in terms of Bernoulli functions.


2011 ◽  
Vol 2011 ◽  
pp. 1-21 ◽  
Author(s):  
Roberto B. Corcino ◽  
Cristina B. Corcino

It is shown that the sequence of the generalized Bell polynomialsSn(x)is convex under some restrictions of the parameters involved. A kind of recurrence relation forSn(x)is established, and some numbers related to the generalized Bell numbers and their properties are investigated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Feng Qi ◽  
Bai-Ni Guo

Abstract In this paper, by the Faà di Bruno formula and properties of Bell polynomials of the second kind, the authors reconsider the generating functions of Hermite polynomials and their squares, find an explicit formula for higher-order derivatives of the generating function of Hermite polynomials, and derive explicit formulas and recurrence relations for Hermite polynomials and their squares.


2019 ◽  
Vol 26 (3) ◽  
pp. 367-379 ◽  
Author(s):  
Gabriella Bretti ◽  
Pierpaolo Natalini ◽  
Paolo Emilio Ricci

Abstract In a recent paper, we have introduced new sets of Sheffer and Brenke polynomial sequences based on higher order Bell numbers. In this paper, by using a more compact notation, we show another family of exponential polynomials belonging to the Sheffer class, called, for shortness, Sheffer–Bell polynomials. Furthermore, we introduce a set of logarithmic numbers, which are the counterpart of Bell numbers and their extensions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yuankui Ma ◽  
Dae San Kim ◽  
Taekyun Kim ◽  
Hanyoung Kim ◽  
Hyunseok Lee

Abstract Recently, the nth Lah–Bell number was defined as the number of ways a set of n elements can be partitioned into nonempty linearly ordered subsets for any nonnegative integer n. Further, as natural extensions of the Lah–Bell numbers, Lah–Bell polynomials are defined. We study Lah–Bell polynomials with and without the help of umbral calculus. Notably, we use three different formulas in order to express various known families of polynomials such as higher-order Bernoulli polynomials and poly-Bernoulli polynomials in terms of the Lah–Bell polynomials. In addition, we obtain several properties of Lah–Bell polynomials.


Sign in / Sign up

Export Citation Format

Share Document