scholarly journals Preparation and Characterisation of Crosslinked Natural Rubber (SMR CV 60) and Epoxidised Natural Rubber (ENR-50) Blends

Author(s):  
M. SASITARAN ◽  
S. MANROSHAN ◽  
C.S. LIM ◽  
B. N. KRISHNA VENI ◽  
S.K. ONG ◽  
...  

In this sudy, the influenceof di(tert-butylperoxyisopropyl)benzene (DTBPIB) on the properties of natural rubber (NR) blend with epoxidized natural rubber (ENR) was determined. Fourier transform infrared spectroscopy with attenuated total refletance analysis and gel content confired crosslinking occurred in the rubber blends in the presence of peroxide DTBPIB percentage. Studies including tensile properties, dynamic mechanical properties, thermogravimetric analysis (TGA) and water absorptivity showed the changes in properties of the crosslinked NR/ENR blends. Tensile properties analysis disclosed the improvements in the modulus at 300% elongation and tensile stength with increasing NR ratios. Dynamic mechanical analysis revealed the blends to be incompatible and immiscible, with ENR showing a more viscous behaviour compared to the polymer blends. Thermal properties improved by blending NR with ENR as the onset temperature of NR/ENR: 50/50 was higher than pure NR by approximately 10oC and ENR by approximately 2oC. Water absorptivity experiment revealed a two-fold reduction in the presence of crosslinking for all blend ratios.

2013 ◽  
Vol 712-715 ◽  
pp. 111-114 ◽  
Author(s):  
Tian Ming Gao ◽  
Mao Fang Huang ◽  
Rui Hong Xie ◽  
Hong Lian Chen

Surface modified nanocrystalline cellulose (NCC) was prepared by silicon-69, and then blended into natural rubber latex to prepare nanocomposites. The nanocomposites properties of tensile properties, tear strength, morphology and thermal dynamic mechanical properties were measured by mechanical property testing, scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA), respectively. The results showed that modified NCC is homogeneously distributed throughout NR matrix, which leads to the enhancement on mechanical properties. Moreover, the storage modulus (E) of modified nanocellulose filled NR is higher than unmodified nanocellulose filled NR, and the tanδ is reversed.


2015 ◽  
Vol 659 ◽  
pp. 522-526 ◽  
Author(s):  
Manit Kaewduang ◽  
Ekrachan Chaichana ◽  
Bunjerd Jongsomjit ◽  
Adisak Jaturapiree

Cellulose based fibers such as sisal, jute and coir are ones of the most frequently used reinforcing fillers for composite materials including natural rubber composites because they can improve mechanical properties of their composites. However, the main disadvantages of these composites are the poor compatibility between the fiber surface and the host matrices, mainly due to the highly hydrophilic character of the fibers and the hydrophobic character of the host materials. Therefore, in this research, coir had been modified with linear low-density polyethylene (LLDPE) prior to introducing into the natural rubber composites. The coir-filled LLDPE was synthesized by in situ polymerization with MAO/metallocene catalyst, named as modified coir. The unmodified coir and modified coir were then blended with natural rubber latex to obtain natural rubber composites. The morphology and thermal dynamic mechanical properties of the composites were investigated by scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA). The composites blended with the modified coir showed the better compatibility between the coir and the natural rubber than those with the unmodified coir. In addition, they also showed the greater storage modulus and lower tan delta than the unmodified counterpart and the pure natural rubber without the reinforcement.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1510
Author(s):  
Marek Pöschl ◽  
Shibulal Gopi Sathi ◽  
Radek Stoček ◽  
Ondřej Kratina

The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels–Alder reaction.


Sign in / Sign up

Export Citation Format

Share Document