Large Sediment Accumulations and Major Subsidence Offshore; Rapid Uplift on Land: Consequences of Extension of Gorontalo Bay and Northern Sulawesi

2018 ◽  
Author(s):  
Juliane Hennig
Keyword(s):  
2014 ◽  
Vol 14 (23) ◽  
pp. 12745-12762 ◽  
Author(s):  
B. Vogel ◽  
G. Günther ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Hoor ◽  
...  

Abstract. Enhanced tropospheric trace gases such as CO, CH4 and H2O and reduced stratospheric O3 were measured in situ in the lowermost stratosphere over northern Europe on 26 September 2012 during the TACTS aircraft campaign. The measurements indicate that these air masses clearly differ from the stratospheric background. The calculation of 40-day backward trajectories with the trajectory module of the CLaMS model shows that these air masses are affected by the Asian monsoon anticyclone. Some air masses originate from the boundary layer in Southeast Asia/West Pacific and are rapidly lifted (1–2 days) within a typhoon up to the outer edge of the Asian monsoon anticyclone. Afterwards, the air parcels are entrained by the anticyclonic circulation of the Asian monsoon. The subsequent long-range transport (8–14 days) of enhanced water vapour and pollutants to the lowermost stratosphere in northern Europe is driven by eastward transport of tropospheric air from the Asian monsoon anticyclone caused by an eddy shedding event. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway that may carry boundary emissions from Southeast Asia/West Pacific within approximately 5 weeks to the lowermost stratosphere in northern Europe.


Author(s):  
Darren F. MARK ◽  
Clive M. RICE ◽  
Malcolm HOLE ◽  
Dan CONDON

ABSTRACTThe Souter Head sub-volcanic complex (Aberdeenshire, Scotland) intruded the high-grade metamorphic core of the Grampian Orogen at 469.1 ± 0.6 Ma (uranium-238–lead-206 (238U–206Pb) zircon). It follows closely peak metamorphism and deformation in the Grampian Terrane and tightly constrains the end of the Grampian Event of the Caledonian Orogeny. Temporally coincident U–Pb and argon/argon (40Ar/39Ar) data show the complex cooled quickly with temperatures decreasing from ca.800 °C to less than 200 °C within 1 Ma. Younger rhenium–osmium (Re–Os) ages are due to post-emplacement alteration of molybdenite to powellite. The U–Pb and Ar/Ar data combined with existing geochronological data show that D2/D3 deformation, peak metamorphism (Barrovian and Buchan style) and basic magmatism in NE Scotland were synchronous at ca.470 Ma and are associated with rapid uplift (5–10 km Ma−1) of the orogen, which, by ca.469 Ma, had removed the cover to the metamorphic pile. Rapid uplift resulted in decompressional melting and the generation of mafic and felsic magmatism. Shallow slab break-off (50–100 km) is invoked to explain the synchroneity of these events. This interpretation implies that peak metamorphism and D2/D3 ductile deformation were associated with extension. Similarities in the nature and timing of orogenic events in Connemara, western Ireland, with NE Scotland suggest that shallow slab break-off occurred in both localities.


2020 ◽  
Vol 544 ◽  
pp. 116376 ◽  
Author(s):  
Malwina San Jose ◽  
Jeremy K. Caves Rugenstein ◽  
Domenico Cosentino ◽  
Claudio Faccenna ◽  
Maria Giuditta Fellin ◽  
...  

2012 ◽  
Vol 78 (2) ◽  
pp. 174-184 ◽  
Author(s):  
Wenxia Han ◽  
Xiaomin Fang ◽  
André Berger

AbstractThe mid-Pleistocene transition (MPT) of the global climate system, marked by a shift of previously dominant 41-ka cycles to lately dominant 100-ka cycles roughly in the mid-Pleistocene, is one of the fundamental enigma in the Quaternary climate evolution. The process and origin of the MPT remain of persistent interest and conjecture. Here we present high-resolution astronomically tuned magnetic susceptibility (MS) and grain‐size records from a complete loess–paleosol sequence at Chaona on the central Chinese Loess Plateau. These two proxies are well-known sensitive indicators to the East Asian summer and winter monsoons, respectively. The records reveal a remarkable two-step simultaneous enhancement of the East Asian summer and winter monsoons at 0.9 Ma and 0.64 Ma, respectively, accompanied with an onset of a clear 100-ka cycle at 0.9 Ma and of a final, predominant 100-ka cycle starting at 0.64 Ma. The mid-Pleistocene stepwise rapid uplift of the Tibetan Plateau could be the mechanism driving the simultaneous enhancement of East Asian summer and winter monsoons and the shift of the periodicities during the MPT by complex positive feedbacks.


Science ◽  
2006 ◽  
Vol 314 (5800) ◽  
pp. 760b-760b ◽  
Author(s):  
T. Sempere ◽  
A. Hartley ◽  
P. Roperch
Keyword(s):  

2009 ◽  
Vol 68 (4) ◽  
pp. 254-269 ◽  
Author(s):  
Tuncer Demir ◽  
Ali Seyrek ◽  
Hervé Guillou ◽  
Stéphane Scaillet ◽  
Rob Westaway ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document