scholarly journals Multi-chronometer dating of the Souter Head complex: rapid exhumation terminates the Grampian Event of the Caledonian Orogeny

Author(s):  
Darren F. MARK ◽  
Clive M. RICE ◽  
Malcolm HOLE ◽  
Dan CONDON

ABSTRACTThe Souter Head sub-volcanic complex (Aberdeenshire, Scotland) intruded the high-grade metamorphic core of the Grampian Orogen at 469.1 ± 0.6 Ma (uranium-238–lead-206 (238U–206Pb) zircon). It follows closely peak metamorphism and deformation in the Grampian Terrane and tightly constrains the end of the Grampian Event of the Caledonian Orogeny. Temporally coincident U–Pb and argon/argon (40Ar/39Ar) data show the complex cooled quickly with temperatures decreasing from ca.800 °C to less than 200 °C within 1 Ma. Younger rhenium–osmium (Re–Os) ages are due to post-emplacement alteration of molybdenite to powellite. The U–Pb and Ar/Ar data combined with existing geochronological data show that D2/D3 deformation, peak metamorphism (Barrovian and Buchan style) and basic magmatism in NE Scotland were synchronous at ca.470 Ma and are associated with rapid uplift (5–10 km Ma−1) of the orogen, which, by ca.469 Ma, had removed the cover to the metamorphic pile. Rapid uplift resulted in decompressional melting and the generation of mafic and felsic magmatism. Shallow slab break-off (50–100 km) is invoked to explain the synchroneity of these events. This interpretation implies that peak metamorphism and D2/D3 ductile deformation were associated with extension. Similarities in the nature and timing of orogenic events in Connemara, western Ireland, with NE Scotland suggest that shallow slab break-off occurred in both localities.

Author(s):  
William McCarthy ◽  
R. John Reavy ◽  
Carl T. Stevenson ◽  
Michael S. Petronis

ABSTRACTThe Galway Granite Complex is unique among the British and Irish Caledonian granitoid terranes, as it records punctuated phases of magmatism from ∼425–380 Ma throughout the latest phase of the Caledonian Orogeny. Remapping of the Omey Pluton, the oldest member of this suite, has constrained the spatial distribution and contact relationships of the pluton's three main facies relative to the nature of the host rock structure. The external contacts of the pluton are mostly concordant to the limbs and hinge of the Connemara Antiform. New AMS data show that a subtle concentric outward dipping foliation is present, and this is interpreted to reflect pluton inflation during continued magma ingress. Combined field, petrographic and AMS data show that two sets of shear zones (NNW–SSE and ENE–WSW) cross-cut the concentric foliation, and that these structures were active during the construction of the pluton. We show that regional sinistral transpression at ∼420 Ma would have caused dilation along the intersection of these two fault sets, and suggest that this facilitated centralised magma ascent. Lateral emplacement was controlled by the symmetry of the Connemara Antiform to ultimately produce a discordant phacolith. We propose that regional sinistral transpression at ∼420 Ma influenced the siting of smaller intrusions over NNW–SSE faults, and that the later onset of regional transtension caused larger volumes of magma to intrude along the E–W Skird Rocks Fault at ∼400 Ma.


1982 ◽  
Vol 19 (2) ◽  
pp. 288-307 ◽  
Author(s):  
Kent C. Nielsen

Mara Lake, British Columbia straddles the boundary between the Monashee Group on the east and the Mount Ida Group on the west. Correlation of units across the southern end of Mara Lake indicates lithologic continuity between parts of the groups. Both groups have experienced four phases of deformation. Phases one and two are tight and recumbent, trending to the north and to the west, respectively. Phases three and four are open to closed and upright, trending northwest and northeast, respectively. Second-phase deformation includes large-scale tectonic slides that separate areas of consistent vergence. Slide surfaces are folded by third- and fourth-phase structures and outline domal outcrop patterns. Metamorphic grade increases from north to south along the west side of Mara Lake. Calc-silicate reactions involving the formation of diopside are characteristic. From west to east increasing grade is evident in the reaction of muscovite + quartz producing sillimanite + K-feldspar + water. These prograde reactions are related to relative position in the second-phase structure. The highest grade is located near the lowest slide surface. Greenschist conditions accompanied phase-three deformation. Fourth phase is characterized by hydrothermal alteration, brittle fracturing, and local faulting. First-phase deformation appears to be pre-Late Triassic whereas second and third phases are post-Late Triassic and pre-Cretaceous. The fourth phase is part of a regional Tertiary event. The third folding event is correlated with the development of the Chase antiform and the second-phase folding is related to the pervasive east–west fabric of the Shuswap Complex. The timing of these events indicates that the metamorphic core zone of the eastern Cordillera was relatively rigid during the late Mesozoic foreland thrust development. Ductile deformation significantly preceded thrusting and developed a fabric almost at right angles to the trend of the thrust belt.


2010 ◽  
Vol 147 (6) ◽  
pp. 886-894 ◽  
Author(s):  
MARTIN FEELY ◽  
DAVID SELBY ◽  
JON HUNT ◽  
JAMES CONLIFFE

AbstractNew Re–Os age determinations from the Galway Granite (samples: KMG = 402.2 ± 1.1 Ma, LLG = 399.5 ± 1.7 Ma and GBM = 383.3 ± 1.1 Ma) show that in south Connemara, late Caledonian granite-related molybdenite mineralization extended from c. 423 Ma to c. 380 Ma. These events overlap and are in excellent agreement with the published granite emplacement history determined by U–Pb zircon geochronology. The spatial distribution of the late-Caledonian Connemara granites indicates that initial emplacement and molybdenite mineralization occurred at c. 420 Ma (that is, the Omey Granite and probably the Inish, Leterfrack and Roundstone granites) to the N and NW of the Skird Rocks Fault, an extension of the orogen-parallel Southern Uplands Fault in western Ireland. A generally southern and eastward progression of granite emplacement (and molybdenite mineralization) sited along the Skird Rocks Fault then followed, at c. 410 Ma (Roundstone Murvey and Carna granites), at c. 400 Ma (Errisbeg Townland Granite, Megacrystic Granite, Mingling Mixing Zone Granodiorite, Lough Lurgan Granite and Kilkieran Murvey Granite) and at c. 380 Ma (Costelloe Murvey Granite, Shannapheasteen and Knock granites). The duration of granite magmatism and mineralization in Connemara is similar to other sectors of the Appalachian–Caledonian orogeny and several tectonic processes (e.g. slab-breakoff, asthenospheric flow, transtension and decompression) may account for the duration and variety of granite magmatism of the western Irish Caledonides.


1993 ◽  
Vol 57 (388) ◽  
pp. 437-450 ◽  
Author(s):  
S. J. Dee ◽  
S. Roberts

AbstractVein formation occurred throughout a deformation sequence which involved early transpressive ductile deformation through to late-kinematic transpressive brittle structures which host a series of gold prospects. Fluid inclusion data from (S1) fabric parallel veins associated with early deformation suggest that a low-salinity aqueous fluid, with a mean salinity of 6.4 wt.%, was present during peak metamorphism, Pelite mineralogy and isochores constrain peak metamorphism to the lowermost part of the upper greenschist facies at 325 to 425°C and 1.4 to 3.4 kbar.Fluid inclusion data from auriferous and barren late-kinematic quartz veins, both containing unmixing assemblages of aqueo-carbonic inclusions with low salinities of ≈2.7 wt.% NaCl equiv., indicate unmixing occurred at 300°C and 1.5 kbar.Volatiles (CO2, N2, CH4) are observed in all the late-kinematic veins. The N2contents of veins with elevated gold grades are typically higher than those with low gold grades. N2reaches 8.7 mole% in a vein with 0.49−4.6 p.p.m. Au compared to <1 mole% in a vein with <0.05 p.p.m. Au. The CH4content of late kinematic veins is generally less than 1 mole% and shows no relative enrichment in mineralised veins. The generation of N2in the mineralising fluid most likely results from interaction of fluid with the ammonium ion, NH4+, in micas and feldspars. This interaction could take place either at source, due to metamorphic devolatisation reactions, or along those structures which acted as fluid conduits due to fluid-rock interaction.


2016 ◽  
Author(s):  
Frances J. Cooper ◽  
John P. Platt ◽  
Whitney M. Behr

Abstract. High strain mylonitic rocks in Cordilleran metamorphic core complexes reflect ductile deformation in the middle crust, but in many examples it is unclear how these mylonites relate to the brittle detachments that overlie them. Field observations, microstructural analyses, and thermobarometric data from the footwalls of three metamorphic core complexes in the Basin and Range province, USA (the Whipple Mountains, California; the northern Snake Range, Nevada; and Ruby Mountains–East Humboldt Range, Nevada) suggest the presence of two distinct rheological transitions in the middle crust. (1) The brittle-ductile transition (BDT), which depends on thermal gradient and tectonic regime, and marks the switch from discrete brittle faulting and cataclasis to continuous, but still localized, ductile shear. (2) The localized-distributed transition or LDT, a deeper, dominantly temperature-dependent transition, which marks the switch from localized ductile shear to distributed ductile flow. In this model, brittle normal faults in the upper crust persist as ductile shear zones below the BDT in the middle crust, and sole into the subhorizontal LDT at greater depths. In metamorphic core complexes, the presence of these two distinct rheological transitions results in the development of two zones of ductile deformation: a relatively narrow zone of high-stress mylonite that is spatially and genetically related to the brittle detachment, underlain by a broader zone of high-strain, relatively low-stress rock that formed in the middle crust below the LDT, and in some cases before the detachment was initiated. In some examples (e.g. the Whipple Mountains) the lower zone is spatially distinct from the detachment, although high-strain rocks from the lower zone were subsequently exhumed along the detachment. The two zones show distinct microstructural assemblages, reflecting different conditions of temperature and stress during deformation, and contain superposed sequences of microstructures reflecting progressive exhumation, cooling, and strain localization.


Tectonics ◽  
1989 ◽  
Vol 8 (2) ◽  
pp. 153-168 ◽  
Author(s):  
Daniel K. Holm ◽  
Richard J. Norris ◽  
David Craw

Solid Earth ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 199-215 ◽  
Author(s):  
Frances J. Cooper ◽  
John P. Platt ◽  
Whitney M. Behr

Abstract. High-strain mylonitic rocks in Cordilleran metamorphic core complexes reflect ductile deformation in the middle crust, but in many examples it is unclear how these mylonites relate to the brittle detachments that overlie them. Field observations, microstructural analyses, and thermobarometric data from the footwalls of three metamorphic core complexes in the Basin and Range Province, USA (the Whipple Mountains, California; the northern Snake Range, Nevada; and Ruby Mountains–East Humboldt Range, Nevada), suggest the presence of two distinct rheological transitions in the middle crust: (1) the brittle–ductile transition (BDT), which depends on thermal gradient and tectonic regime, and marks the switch from discrete brittle faulting and cataclasis to continuous, but still localized, ductile shear, and (2) the localized–distributed transition, or LDT, a deeper, dominantly temperature-dependent transition, which marks the switch from localized ductile shear to distributed ductile flow. In this model, brittle normal faults in the upper crust persist as ductile shear zones below the BDT in the middle crust, and sole into the subhorizontal LDT at greater depths.In metamorphic core complexes, the presence of these two distinct rheological transitions results in the development of two zones of ductile deformation: a relatively narrow zone of high-stress mylonite that is spatially and genetically related to the brittle detachment, underlain by a broader zone of high-strain, relatively low-stress rock that formed in the middle crust below the LDT, and in some cases before the detachment was initiated. The two zones show distinct microstructural assemblages, reflecting different conditions of temperature and stress during deformation, and contain superposed sequences of microstructures reflecting progressive exhumation, cooling, and strain localization. The LDT is not always exhumed, or it may be obscured by later deformation, but in the Whipple Mountains, it can be directly observed where high-strain mylonites captured from the middle crust depart from the brittle detachment along a mylonitic front.


2011 ◽  
Vol 311 (4) ◽  
pp. 261-314 ◽  
Author(s):  
A. Strickland ◽  
E. L. Miller ◽  
J. L. Wooden ◽  
R. Kozdon ◽  
J. W. Valley

2020 ◽  
Author(s):  
Luca Menegon ◽  
Lucy Campbell ◽  
Åke Fagereng ◽  
Giorgio Pennacchioni

&lt;p&gt;&lt;span&gt;&lt;span&gt;The origin of earthquakes in the lower crust at depth of 20-40 km, where dominantly ductile deformation is expected, is highly debated. Exhumed networks of lower crustal coeval pseudotachylytes (quenched frictional melt produced during seismic slip) and mylonites (produced during the post- and interseismic viscous creep) provide a snapshot of the earthquake cycle at anomalously deep conditions in the crust. Such natural laboratories offer the opportunity to investigate the origin and the tectonic setting of lower crustal earthquakes.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;&lt;span&gt;The Nusfjord East shear zone network (Lofoten, northern Norway) represents an exhumed lower crustal earthquake source, where mutually overprinting mylonites and pseudotachylytes record the interplay between coseismic slip and viscous creep (Menegon et al., 2017; Campbell and Menegon, 2019). The network is well exposed over an area of 4 km&lt;sup&gt;2&lt;/sup&gt; and consists of three main intersecting sets of ductile shear zones ranging in width from 1 cm to 1 m, which commonly nucleate on former pseudotachylyte veins. Mutual crosscutting relationships indicate that the three sets were active at the same time. Amphibole-plagioclase geothermobarometry yields consistent P-T estimates in all three sets (700-750 &amp;#176;C, 0.7-0.8 GPa). The shear zones separate relatively undeformed blocks of anorthosite that contain pristine pseudotachylyte fault veins. These pseudotachylytes link adjacent or intersecting shear zones, and are interpreted as fossil seismogenic faults representing earthquake nucleation as a transient consequence of ongoing, localised aseismic creep along the shear zones (Campbell et al., under review).&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;&lt;span&gt;The coeval activity of the three shear zone sets is consistent with a local extensional setting, with a bulk vertical shortening and a horizontal NNW-SSE extension. This extension direction is subparallel to the convergence direction between Baltica and Laurentia during the Caledonian Orogeny, and with the dominant direction of nappe thrusting in the Scandinavian Caledonides. &lt;sup&gt;40&lt;/sup&gt;Ar&amp;#8208;&lt;sup&gt;39&lt;/sup&gt;Ar dating of localized upper amphibolite facies shear zones in the Nusfjord area with similar orientation to the Nusfjord East network yielded an age range of 433&amp;#8211;413 Ma (Fournier et al., 2014; Steltenpohl et al., 2003), which indicates an origin during the collisional (Scandian) stage of the Caledonian Orogeny.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;&lt;span&gt;We propose that the Nusfjord East brittle-viscous extensional shear zone network represents the rheological response of the lower crust to the bending of the lower plate during continental collision. (Micro)seismicity in the lower crust in collisional orogens is commonly localized in the lower plate and has extensional focal mechanisms. This has been tentatively correlated with slab rollback and bending of the lower plate (Singer et al., 2014). We interpret the Nusfjord East shear zone network as the geological record of this type of lower crustal seismicity.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document