rapid uplift
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 8)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Gavin Holden

<p>The landscape of Northwest Nelson shows evidence of significant tectonic activity since the inception of the Austro-Pacific plate boundary in the Eocene. Evidence of subsidence followed by rapid uplift from the Eocene to the late Miocene is preserved in the sedimentary basins of Northwest Nelson. However, the effects of erosion mean there is very little evidence of post-Miocene tectonic activity preserved in the Northwest Nelson area. This is a period of particular interest, because it coincides with the onset of rapid uplift along the Alpine Fault, which is located to the south, and the very sparse published data for this period suggest very low uplift rates compared to other areas close to the Alpine Fault.  Cosmogenic nuclide burial dating of sediments preserved in Bulmer Cavern, indicate an uplift rate of 0.13mm/a from the mid-Pliocene to the start of the Pleistocene and 0.067mm/a since the start of the Pleistocene.  The Pleistocene uplift rate is similar to other published uplift rates for this period from the northern parts of Northwest Nelson, suggesting that the whole of Northwest Nelson has experienced relative tectonic stability compared to other areas close to the Alpine Fault during this period. The mid-Pliocene uplift rate is possibly the first precisely constrained uplift rate in the area for this period, and suggests that there has been a progressive decrease in uplift rates from much higher rates in the late Miocene.</p>


2021 ◽  
Author(s):  
◽  
Gavin Holden

<p>The landscape of Northwest Nelson shows evidence of significant tectonic activity since the inception of the Austro-Pacific plate boundary in the Eocene. Evidence of subsidence followed by rapid uplift from the Eocene to the late Miocene is preserved in the sedimentary basins of Northwest Nelson. However, the effects of erosion mean there is very little evidence of post-Miocene tectonic activity preserved in the Northwest Nelson area. This is a period of particular interest, because it coincides with the onset of rapid uplift along the Alpine Fault, which is located to the south, and the very sparse published data for this period suggest very low uplift rates compared to other areas close to the Alpine Fault.  Cosmogenic nuclide burial dating of sediments preserved in Bulmer Cavern, indicate an uplift rate of 0.13mm/a from the mid-Pliocene to the start of the Pleistocene and 0.067mm/a since the start of the Pleistocene.  The Pleistocene uplift rate is similar to other published uplift rates for this period from the northern parts of Northwest Nelson, suggesting that the whole of Northwest Nelson has experienced relative tectonic stability compared to other areas close to the Alpine Fault during this period. The mid-Pliocene uplift rate is possibly the first precisely constrained uplift rate in the area for this period, and suggests that there has been a progressive decrease in uplift rates from much higher rates in the late Miocene.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hisatoshi Ito ◽  
Yoshiko Adachi ◽  
Aitor Cambeses ◽  
Fernando Bea ◽  
Mayuko Fukuyama ◽  
...  

AbstractThe Quaternary Kurobegawa Granite, central Japan, is not only the youngest known granitic pluton exposed on the Earth’s surface, it is one of few localities where both Quaternary volcanics and related plutons are well exposed. Here, we present new zircon U–Pb ages together with whole rock and mineral geochemical data, revealing that the Kurobegawa Granite is a resurgent pluton that was emplaced following the caldera-forming eruption of the Jiigatake Volcanics at 1.55 ± 0.09 Ma. Following the eruption, the remnant magma chamber progressively cooled forming the voluminous Kurobegawa pluton in the upper crust (~ 6 km depth) until ~ 0.7 Ma when resurgence caused rapid uplift and erosion in the region. This is the first study to document the detailed spatiotemporal evolution of resurgent pluton for a Quaternary caldera system. Our new findings may contribute significantly to understanding the fate of active caldera systems that can produce supereruptions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenqiao Xu ◽  
Hongwei Yin ◽  
Dong Jia ◽  
Changsheng Li ◽  
Wei Wang ◽  
...  

The northwestern Sichuan Basin has experienced Meso-Cenozoic intracontinental compressional tectonic processes and formed multi-detachment stratigraphic distribution of foreland basins and fold-thrust belts, which have caused complicated structural deformations in the deep buried layers. Rapid uplift with accelerated erosion and two sets of detachments in the Lower Triassic and Lower Cambrian controlled the multilevel deformation structure. We conducted discrete numerical simulations with double weak detachments and erosion under extrusion conditions in order to examine the mechanics and kinematics of the frontalpiedmont zones of the NW Sichuan Basin. The following findings were made. (1) With continuous compression, the weak detachments promoted the decoupled and ladder-like deformation of the thrust belt, where the deformation above the slip layer extended further than it did below it. Rapid uplift and erosion at the thrust front contributed to the formation of a passive roof fault and a monocline in the upper layer, a series of forward and backward thin-skinned thrust-buried structures in the middle layer sandwiched between two weak detachments and stacking structures in the lower layer. (2) Erosion effectively prevents the deformation from propagating above the upper detachment, but can advance a horizontal transition in the deformation style generated within the middle brittle layer: from oblique and tight fault propagation folds to symmetrical, wide, and gentle detachment folds. (3) The model results consistent with tectonic deformation in the NW Sichuan Basin indicate a possible evolutionary mechanism under compression. There is hierarchical deformation of uncoordinated contraction controlled by the Lower Triassic and Early Cambrian weak layers, with the characteristics of the shallow monocline, the middle thin-skinned thrusts, and the deeper basement-involved folds. Continuous compression contributed a sequential pattern of steps as a whole, from the frontalpiedmont zones to the foreland basin, autochthonous stacking thrusts, and the huge buried structure in the NW Sichuan Basin. During the Himalayan period, syntectonic erosion along with the uplifted thrust front maintained the development of a passive-roof duplex and a huge forward buried structure.


2020 ◽  
Vol 67 (1-4) ◽  
pp. 17-34
Author(s):  
Marek Kulczykowski

Abstract This paper reports results from 1g model tests carried out under single gravity on a skirted foundation installed in sand and subjected to a rapid uplifting force. The effects of displacement rates ranging from 5 mm/s to 450 mm/s on the ultimate capacity, suction pressure inside the skirt compartment, and time of extraction were investigated. Test results indicate that the displacement rate significantly affected the magnitude of uplift resistance, as well as the magnitude of suction under the foundation lid, but had little effect on the relationship between stress and the displacement of the foundation. The shapes of the uplift capacity-displacement curve and the suction-displacement curve were similar for all experimental displacement rates.


2020 ◽  
Vol 544 ◽  
pp. 116376 ◽  
Author(s):  
Malwina San Jose ◽  
Jeremy K. Caves Rugenstein ◽  
Domenico Cosentino ◽  
Claudio Faccenna ◽  
Maria Giuditta Fellin ◽  
...  

Author(s):  
Darren F. MARK ◽  
Clive M. RICE ◽  
Malcolm HOLE ◽  
Dan CONDON

ABSTRACTThe Souter Head sub-volcanic complex (Aberdeenshire, Scotland) intruded the high-grade metamorphic core of the Grampian Orogen at 469.1 ± 0.6 Ma (uranium-238–lead-206 (238U–206Pb) zircon). It follows closely peak metamorphism and deformation in the Grampian Terrane and tightly constrains the end of the Grampian Event of the Caledonian Orogeny. Temporally coincident U–Pb and argon/argon (40Ar/39Ar) data show the complex cooled quickly with temperatures decreasing from ca.800 °C to less than 200 °C within 1 Ma. Younger rhenium–osmium (Re–Os) ages are due to post-emplacement alteration of molybdenite to powellite. The U–Pb and Ar/Ar data combined with existing geochronological data show that D2/D3 deformation, peak metamorphism (Barrovian and Buchan style) and basic magmatism in NE Scotland were synchronous at ca.470 Ma and are associated with rapid uplift (5–10 km Ma−1) of the orogen, which, by ca.469 Ma, had removed the cover to the metamorphic pile. Rapid uplift resulted in decompressional melting and the generation of mafic and felsic magmatism. Shallow slab break-off (50–100 km) is invoked to explain the synchroneity of these events. This interpretation implies that peak metamorphism and D2/D3 ductile deformation were associated with extension. Similarities in the nature and timing of orogenic events in Connemara, western Ireland, with NE Scotland suggest that shallow slab break-off occurred in both localities.


2018 ◽  
Vol 481 ◽  
pp. 328-337 ◽  
Author(s):  
Kristen L. Cook ◽  
Niels Hovius ◽  
Hella Wittmann ◽  
Arjun M. Heimsath ◽  
Yuan-Hsi Lee

Sign in / Sign up

Export Citation Format

Share Document