scholarly journals CONFINEMENT ENERGY OF QUANTUM DOTS AND THE BRUS EQUATION

2020 ◽  
Vol 8 (11) ◽  
pp. 318-323
Author(s):  
S.T. Harry ◽  
M.A Adekanmbi

A review of the ground state confinement energy term in the Brus equation for the bandgap energy of a spherically shaped semiconductor quantum dot was made within the framework of effective mass approximation. The Schrodinger wave equation for a spherical nanoparticle in an infinite spherical potential well was solved in spherical polar coordinate system. Physical reasons in contrast to mathematical expediency were considered and solution obtained. The result reveals that the shift in the confinement energy is less than that predicted by the Brus equation as was adopted in most literatures.

Author(s):  
C. Rajalingham ◽  
R. B. Bhat ◽  
G. D. Xistris

Abstract The natural frequencies and natural modes of vibration of uniform elliptic plates with clamped, simply supported and free boundaries are investigated using Rayleigh-Ritz method. A modified polar coordinate system is used to investigate the problem. Energy expressions in Cartesian coordinate system are transformed into the modified polar coordinate system. Boundary characteristic orthogonal polynomials in the radial direction, and trigonometric functions in the angular direction are used to express the deflection of the plate. These deflection shapes are classified into four basic categories, depending on its symmetrical or antisymmetrical property about the major and minor axes of the ellipse. The first six natural modes in each of the above categories are presented in the form of contour plots.


2016 ◽  
Vol 33 (4) ◽  
pp. 697-712 ◽  
Author(s):  
R. Andrew Weekley ◽  
R. Kent Goodrich ◽  
Larry B. Cornman

AbstractAn image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinate system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.


2021 ◽  
Vol 12 (1) ◽  
pp. 165-172
Author(s):  
Kan Shi ◽  
Shuai Lin ◽  
Yan'an Yao

Abstract. As a type of spatial transmission mechanism, noncircular bevel gears can be used to transfer the power and motion with a variable transmission ratio between intersecting axes. In this paper, utilizing the spherical triangle theorem and meshing principle, the parametric equations of the contact ratio are established in the space polar coordinate system. Two innovative methods are proposed to analyze the contact ratio by using the rotation angle of the driving (driven) gears and the arc length of pitch curve as pure rolling. In the case of modified gear and X-zero gear, whether the noncircular bevel gear is continuously driven is deduced. The simulation transmission ratio curve and theoretical transmission ratio curve are compared to verify the rationality of the design.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 226 ◽  
Author(s):  
Fernando Rodríguez-Mas ◽  
Juan Carlos Ferrer ◽  
José Luis Alonso ◽  
David Valiente ◽  
Susana Fernández de Ávila

In this paper, we compare four different methods to estimate nanoparticle diameters from optical absorption measurements, using transmission electron microscopy (TEM) images as a reference for the nanoparticle size. Three solutions of colloidal nanoparticles coated with thiophenol with different diameters were synthesized by thiolate decomposition. The nanoparticle sizes were controlled by the addition of a certain volume of a 1% sulphur solution in toluene. TEM measurements showed that the average diameter for each type of these nanoparticles was 2.8 nm, 3.2 nm, and 4.0 nm. The methods studied for the calculation of the nanoparticles diameter were: The Brus model, the hyperbolic band model (HBM), the Henglein model, and the Yu equation. We evaluated the importance of a good knowledge of the nanoparticle bandgap energy, and the nature of electronic transitions in the semiconductor. We studied the effects that small variations in the electron and hole effective mass values produced in the Brus equation and in the HBM model for CdS, PbS, and ZnS nanoparticles. Finally, a comparison was performed between the data provided by these models and the experimental results obtained with TEM images. In conclusion, we observed that the best approximation to the experimental results with TEM images was the Brus equation. However, when the bandgap energy was close to the bulk bandgap energy, the theoretical models did not adjust correctly to the size measured from the TEM images.


Sign in / Sign up

Export Citation Format

Share Document