scholarly journals DESIGN, CONSTRUCTION AND EVALUATION OF RUNOFF WATER HARVESTING POND FOR SMALLHOLDER FARMING

Author(s):  
Bayan Ahmed ◽  
Fikadu Gemeda

Rainfall shortage and variability constrain crop production of smallholder farmers in Ethiopia is the main problem.  For this supplementary irrigation by run off harvesting is strategic pathway to reduce poverty in rural drought prone areas for enhancing agricultural productivity and boosting farm income. For this, this study is conducted to Design, construction and evaluation of runoff water harvesting Pond for supplementary irrigation to addressing inherent crop failures under the rain fed agriculture due to mainly erratic rainfall. For this design climatic and soil data were input to determine seasonal crop water requirement (CWR) of onion and evaporation loss of water from water surface. Then the performances of water harvested verses area irrigate were evaluated. To make this study more economical the water harvester capacity decreed by two fold and water harvesting made at two times. Seasonal volume crop water requirement (CWR) of onion for farm area 2500 m2 and evaporation loss of water from water surface of 121 m2 and total volume of seasonal water need were   382.05,53.38 and 435.43 m3  respectively. The geo-membrane laminated water harvester that has capacity of 223 m3 was designed and constructed. From on field performance shows, this volume of water harvested twice can irrigate 0.25ha by supplementary irrigation using water saving irrigation technology (treadle pump) by over showering and was produced 4.2 tone/ha. The investment, operation and production costs were 63116, 1125 and 6675 ETH birr respectively.  The total cost was 70,916 birr and The growth return of 0.25ha was 15,750 birr/year (1050kg*15 birr/kg). This show the farmer can return 22.21% of their investment cost. So it is recommended to the government and non-government to initiate the farmers at lower stream of the catchment to harvest run off water and use for supplementary irrigation to increase their income.

2019 ◽  
Vol 3 (2) ◽  
pp. 58
Author(s):  
Debby Shafira Chandra ◽  
Nurpilihan Bafdal ◽  
Kharistya Amaru

<h1>The water resource problems in dry season at Jatinangor dry land are the imbalance between water needs and water availability. Technology that can help the farmers in dry season is by using a runoff water harvesting system for irrigation use. Irrigation interval is applied so that water use is more efficient. The purposes of this study are to calculate crop water requirement of sweet corn (Zea mays L. Saccharata Sturt) by using Cropwat 8.0 Software and to find out the use of runoff water harvesting systems on one day interval irrigation in the dry season. This research use descriptive analysis method. The results showed that based on Cropwat 8.0, the crop water requirement of sweet corn is 300,6 mm/periode and the runoff water harvesting pond can fulfill the irrigation water needs of sweet corn in the dry season with actual irrigation water requirement of 55,6 m<sup>3</sup> on 221  m<sup>2 </sup>width of area. The productivity yield of sweet corn is 13,25  tons /ha.</h1>


1984 ◽  
Vol 11 (1) ◽  
pp. 4-6 ◽  
Author(s):  
D. K. Pahalwan ◽  
R. S. Tripathi

Abstract Field experiment was conducted during dry season of 1981 and 1982 to determine the optimal irrigation schedule for summer peanuts (Arachis hypogaea L.) in relation to evaporative demand and crop water requirement at different growth stages. It was observed that peanut crop requires a higher irrigation frequency schedule during pegging to pod formation stage followed by pod development to maturity and planting to flowering stages. The higher pod yield and water use efficiency was obtained when irrigations were scheduled at an irrigation water to the cumulative pan evaporation ratio of 0.5 during planting to flowering, 0.9 during pegging to pod formation and 0.7 during pod development to maturity stage. The profile water contribution to total crop water use was higher under less frequent irrigation schedules particularly when the irrigations were scheduled at 0.5 irrigation water to the cumulative pan evaporation ratio up to the pod formation stage.


Agriculture is most important resources of any country worldwide which is a major renewable source and is dynamic. The study area selected was command area under Basavanna canal which is one of the canals to Tungabhadra river on right side bank. This selected canal for cropping pattern analysis has a command of 1240.00 hectare and is located at Vallabhpur, Bellary district. Basavanna canal has a designed discharge capacity of 125 cusecs for serving the cropping area. Every irrigation project has planned cropping pattern, the crop water requirement (CWR) for which is calculated based on Duty / Delta method. However due to growing population and increase demand for food products crop violation is found in every command leading to more irrigation. Remote Sensing (RS) and Geographical Information System (GIS) techniques have emerged as powerful tools for crop water management. Remotely sensed land use-land cover data was used for analysing the cropping pattern in the area and also to estimate the change in the cropping pattern. This study was performed using ArcGIS 9.3 and ERDAS 9 software. Crop water requirement was calculated using Modified Penman Equation for present cropping pattern. The study finds that, approximately 50% of water could be saved using modified Penmen method compared to crop water requirement calculated using Duty Delta method as adopted in project report and the same water may be diverted to meet other needs


Sign in / Sign up

Export Citation Format

Share Document