2008 ◽  
Vol 138 ◽  
pp. 91-118 ◽  
Author(s):  
Yuriy S. Nechaev

Specific phase transitions to the compound-like impurity nanosegregation structures at dislocations and grain boundaries in metals and their influence on diffusion-assisted processes are considered, mainly, on the basis of the thermodynamic analysis of the related experimental data. The following systems and aspects are in detail considered: (1) the hydride-like nanosegregation of hydrogen at dislocations and grain boundaries in palladium and their influence on the apparent characteristics of hydrogen solubility and diffusivity in palladium; (2) the physics of the anomalous characteristics of diffusion of Fe and other transition impurities in crystalline Al at elevated temperatures, the role of the compound-like nanosegregation (CLNS) of Fe and the others at dislocations and grain boundaries in Al, analysis of the Mössbauer and diffusion data on CLNS of Fe at grain boundaries and dislocations in Al; (3) some new physical aspects of internal oxidation and nitridation of metals (for Cu-0.3%Fe alloy/Cu2O surface layer, and for (Ni-5%Cr) alloy / N2 gas), the role of the compound-like impurity nanosegregation at dislocations and grain boundaries, study results on the deviations from the classical theories predictions and their interpretation. The possibility is considered of nanotechnology applications of the study results for creation of nanostructured metals with compound-like nanosegregation structures at grain boundaries, in order to obtain specific physical and mechanical properties of such a cellural-type nanocomposites. In particular, it can be complex hydride-like, carbide-like, nitride-like, carbide-nitride-like, oxide-like or intermetallide-like nanosegregation structures at grain boundaries of nanostructured metals.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1470
Author(s):  
Michèle Dai ◽  
Evangelos Georgilis ◽  
Guillaume Goudounet ◽  
Bertrand Garbay ◽  
Jan Pille ◽  
...  

Diblock copolymers based-on elastin-like polypeptide (ELP) have the potential to undergo specific phase transitions when thermally stimulated. This ability is especially suitable to form carriers, micellar structures for instance, for delivering active cargo molecules. Here, we report the design and study of an ELP diblock library based on ELP-[M1V3-i]-[I-j]. First, ELP-[M1V3-i]-[I-j] (i = 20, 40, 60; j = 20, 90) that showed a similar self-assembly propensity (unimer-to-aggregate transition) as their related monoblocks ELP-[M1V3-i] and ELP-[I-j]. By selectively oxidizing methionines of ELP-[M1V3-i] within the different diblocks structures, we have been able to access a thermal phase transition with three distinct regimes (unimers, micelles, aggregates) characteristic of well-defined ELP diblocks.


2021 ◽  
Author(s):  
Tomas Zelenka ◽  
Petros Tzerpos ◽  
Giorgos Panagopoulos ◽  
Konstantinos Tsolis ◽  
Dionysios-Alexandros Papamatheakis ◽  
...  

Intracellular space is demarcated into functional membraneless organelles and nuclear bodies via the process of phase separation. Phase transitions are involved in many functions linked to such bodies as well as in gene expression regulation and other cellular processes. In this work we describe how the genome organizer SATB1 utilizes its prion-like domains to undergo phase transitions. We have identified two SATB1 isoforms with distinct biophysical behavior and showed how phosphorylation and interaction with nuclear RNA, impact their phase transitions. Moreover, we show that SATB1 is associated with transcription and splicing, both of which evinced deregulation in Satb1 knockout mice. Thus, the tight regulation of different SATB1 isoforms levels and their post-translational modifications are imperative for SATB1's physiological roles in T cell development while their deregulation may be linked to disorders such as cancer.


2019 ◽  
Author(s):  
Jeong-Mo Choi ◽  
Furqan Dar ◽  
Rohit V. Pappu

AbstractBiomolecular condensates form via phase transitions that combine phase separation or demixing and networking of key protein and RNA molecules. Proteins that drive condensate formation are either linear or branched multivalent proteins where multivalence refers to the presence of multiple protein-protein or protein-nucleic acid interaction domains or motifs within a protein. Recent work has shown that multivalent protein drivers of phase transitions are in fact biological instantiations of associative polymers. Such systems can be characterized by stickers-and-spacers architectures where stickers contribute to system-specific spatial hierarchies of directional interactions and spacers control the concentration-dependent inhomogeneities in densities of stickers around one another. The collective effects of interactions among stickers and spacers lead to the emergence of dense droplet phases wherein the stickers form percolated networks of polymers. To enable the calculation of system-specific phase diagrams of multivalent proteins, we have developed LASSI (LAttice simulations of Sticker and Spacer Interactions), which is an efficient open source computational engine for lattice-based polymer simulations built on the stickers and spacers framework. In LASSI, a specific multivalent protein architecture is mapped into a set of beads on the 3-dimensional lattice space with proper coarse-graining, and specific sticker-sticker interactions are modeled as pairwise anisotropic interactions. For efficient and broad search of the conformational ensemble, LASSI uses Monte Carlo methods, and we optimized the move set so that LASSI can handle both dilute and dense systems. Also, we developed quantitative measures to extract phase boundaries from LASSI simulations, using known and hidden collective parameters. We demonstrate the application of LASSI to two known archetypes of linear and branched multivalent proteins. The simulations recapitulate observations from experiments and importantly, they generate novel quantitative insights that augment what can be gleaned from experiments alone. We conclude with a discussion of the advantages of lattice-based approaches such as LASSI and highlight the types of systems across which this engine can be deployed, either to make predictions or to enable the design of novel condensates.Author SummarySpatial and temporal organization of molecular matter is a defining hallmark of cellular ultrastructure and recent attention has focused intensely on organization afforded by membraneless organelles, which are referred to as biomolecular condensates. These condensates form via phase transitions that combine phase separation and networking of condensate-specific protein and nucleic acid molecules. Several questions remain unanswered regarding the driving forces for condensate formation encoded in the architectures of multivalent proteins, the molecular determinants of material properties of condensates, and the determinants of compositional specificity of condensates. Building on recently recognized analogies between associative polymers and multivalent proteins, we have developed and deployed LASSI, an open source computational engine that enables the calculation of system-specific phase diagrams for multivalent proteins. LASSI relies on a priori identification of stickers and spacers within a multivalent protein and mapping the stickers onto a 3-dimensional lattice. A Monte Carlo engine that incorporates a suite of novel and established move sets enables simulations that track density inhomogeneities and changes to the extent of networking among stickers as a function of protein concentration and interaction strengths. Calculation of distribution functions and other nonconserved order parameters allow us to compute full phase diagrams for multivalent proteins modeled using a stickers-and-spacers representation on simple cubic lattices. These predictions are shown to be system-specific and allow us to rationalize experimental observations while also enabling the design of systems with bespoke phase behavior. LASSI can be deployed to study the phase behavior of multicomponent systems, which allows us to make direct contact with cellular biomolecular condensates that are in fact multicomponent systems.


Author(s):  
G. Timp ◽  
L. Salamanca-Riba ◽  
L.W. Hobbs ◽  
G. Dresselhaus ◽  
M.S. Dresselhaus

Electron microscopy can be used to study structures and phase transitions occurring in graphite intercalations compounds. The fundamental symmetry in graphite intercalation compounds is the staging periodicity whereby each intercalate layer is separated by n graphite layers, n denoting the stage index. The currently accepted model for intercalation proposed by Herold and Daumas assumes that the sample contains equal amounts of intercalant between any two graphite layers and staged regions are confined to domains. Specifically, in a stage 2 compound, the Herold-Daumas domain wall model predicts a pleated lattice plane structure.


Author(s):  
Oleg Bostanjoglo ◽  
Peter Thomsen-Schmidt

Thin GexTe1-x (x = 0.15-0.8) were studied as a model substance of a composite semiconductor film, in addition being of interest for optical storage material. Two complementary modes of time-resolved TEM were used to trace the phase transitions, induced by an attached Q-switched (50 ns FWHM) and frequency doubled (532 nm) Nd:YAG laser. The laser radiation was focused onto the specimen within the TEM to a 20 μm spot (FWHM). Discrete intermediate states were visualized by short-exposure time doubleframe imaging /1,2/. The full history of a transformation was gained by tracking the electron image intensity with photomultiplier and storage oscilloscopes (space/time resolution 100 nm/3 ns) /3/. In order to avoid radiation damage by the probing electron beam to detector and specimen, the beam is pulsed in this continuous mode of time-resolved TEM,too.Short events ( <2 μs) are followed by illuminating with an extended single electron pulse (fig. 1c)


Author(s):  
Rohan Abeyaratne ◽  
James K. Knowles
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Sign in / Sign up

Export Citation Format

Share Document