scholarly journals Energy and Exergy Performance Calculation of Solar Photovoltaic/ Thermal Hybrid System under the Baghdad Environment

2019 ◽  
Vol 27 (1) ◽  
pp. 130-141 ◽  
Author(s):  
Dheya Ghanim Mutasher ◽  
Mohammed Fowzi Mohammed ◽  
Zaid Salman Obaid

A combined system with photovoltaic panel modules, which extracts heat from water or air and produces thermal and electrical energy which is called a solar photovoltaic or solar thermal photovoltaic thermal (PV/T) system. A way to enhance the electrical efficiency of the PV module is by diminishing the temperature at which the module is working, i.e. by extracting thermal energy. The design of the solar Photovoltaic/Thermal provides certain advantages. When the temperature is increased 1°C, the photoelectric efficiency decrease by 0.5%. This work is principally aimed to clarify the effectiveness by means of the exergy generated in a PV/T hybrid water module, a photovoltaic thermal module, generating thermal and electrical energy. Were determined the energy, exergy and the efficiency of the power conversion for a certain amount of days in function of the solar intensity, the temperature of the module and environmental temperature. During the hours 9:00 am to 3:00 pm, the efficiencies of exergy and power conversion varies according to the following values, between 2.16 - 12.27% for the exergy efficiency and between 5.2 - 11.2% for the power conversion efficiency as well as, the energy efficiency varies between 6.89 – 14.9%. The temperature of the photovoltaic module has a great impact on the electrical, thermal and exergy efficiencies. Moreover, these efficiencies can be enhanced by removing energy in form of heat from the surface of the photovoltaic module.

Author(s):  
C. Manjunath ◽  
Jagannath Reddy ◽  
K. Sai Ranjith Reddy ◽  
I.R. Ganesh Kumar ◽  
S. Sanketh

2015 ◽  
Vol 19 (suppl. 2) ◽  
pp. 625-636 ◽  
Author(s):  
Adarsh Pandey ◽  
Pradeep Pant ◽  
Oruganti Sastry ◽  
Arun Kumar ◽  
Sudhir Tyagi

2012 ◽  
Vol 512-515 ◽  
pp. 30-34
Author(s):  
Li Wen Po ◽  
King Leung Wong ◽  
Wen Lih Chen

The main function of junction box on a solar photovoltaic module is to transmit the electricity from solar photovoltaic panel to the load. The invented smart junction box is designed for the following purposes: (1) to optimize efficiency through auto control, (2) to reduce the vicious effect of the cloud and dust on electricity output, and (3) to prevent the battery from overcharging. When actuated, the temperature of inner transistor is raised up to 158 °C because it consumes more solar electric power than a conventional junction box. Thus, a more effective thermal diffusion system is invented to cool down inner transistor to avoid failure. It is found that the presented heat plate diffusion system modified from heat pipe is capable of satisfying all required thermal diffusion conditions of the smart junction box.


Author(s):  
Armstrong O. Njok ◽  
Joel I. Iloke ◽  
Manoj Kumar Panjwani ◽  
Mangi Fareed Hussain

Photovoltaic modules behave extraordinarily by transforming part of the visible spectrum into electrical energy, and their efficiencies are affected by the nature of radiation (light) reaching them. When light strikes a photovoltaic cell, this light may go through the cell without been absorbed if it is too energetic or if the light possesses low energy it will be absorbed by the cell and cause the electrons to twist and vibrate in their bonds without dislodging them, hence causing the cell to heat up which ultimately leads to a decrease in its overall efficiency. This study is aimed to investigate how photovoltaics respond to different wavelengths of light. For the study to achieve its aim, colour filters were used to ensure that only a particular wavelength of light reaches the photovoltaic module at a time. In the process of collecting data from the solar panel, the solar panel was placed horizontally flat on a platform one meter above sea level facing the sun. Data was first obtained from the solar panel without the filters and after that with the filters placed one at a time and data collected accordingly. The amount of solar power and solar flux anytime a different colour filter was placed on the solar panel were measured. Among the coloured filter used yellow produced the highest efficiency, while blue produced the least efficiency. However, the solar panel was still more efficient when exposed to the natural spectrum.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 253
Author(s):  
G Sreenivasa Reddy ◽  
T Bramhananda Reddy ◽  
M Vijaya Kumar

A solar photovoltaic panel or a solar PV module is a device, which is to be considered universality the basic constituent of a solar photovoltaic system and is a combination of series and parallel assembly of solar cells. The electrical performance of this solar photovoltaic module be contingent on different environmental situations like PV cells/module solar spectral (air mass), ambient temperature, solar irradiance, angle-of-incidence.With these dependent conditions, there will be a petite chance to operate at its maximum power point (MPP) Hence, a Perturb and Observe (P&O) MPP algorithm is employed which draws considerable power with the desired time response. In present work, the interfacing of Solar PV system with the utility grid system which is having 15kW based on the Voltage Oriented Control (VOC). The temperature of the individual photovoltaic cell and solar irradiation are to be considered as inputs for the simulation process, whereas the duty cycle of the DC-DC boost converter is an output of the P&O controller. Performance of this grid-connected PV system with VOC method is analyzed with the simulation results and %THD values of the voltage and current at coupling point is verified. The results show the superiority of VOC method and its high dynamic behavior under variable irradiation conditions.  


2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


Author(s):  
D. T. Kitamura ◽  
K. P. Rocha ◽  
L. W. Oliveira ◽  
J. G. Oliveira ◽  
B. H. Dias ◽  
...  

Actuators ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Tri Cuong Do ◽  
Duc Giap Nguyen ◽  
Tri Dung Dang ◽  
Kyoung Kwan Ahn

In this paper, a novel design of an energy regeneration system was proposed for recovering as well as reusing potential energy in a boom cylinder. The proposed system included a hydraulic pump/motor and an electrical motor/generator. When the boom moved down, the energy regeneration components converted the hydraulic energy to electrical energy and stored in a battery. Then, the regenerated energy was reused at subsequent cycles. In addition, an energy management strategy has been designed based on discrete time-optimal control to guarantee position tracking performance and ensure component safety during the operation. To verify the effectiveness of the proposed system, a co-simulation (using MATLAB and AMESim) was carried out. Through the simulation results, the maximum energy regeneration efficiency could achieve up to 44%. Besides, the velocity and position of the boom cylinder achieved good performance with the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document