scholarly journals Description of a free quantum-mechanical particle in the Lobachevsky space based on the integral equation

Author(s):  
Yu. A. Kurochkin

The quantum mechanical problem of the motion of a free particle in the three-dimensional Lobachevsky space is interpreted as space scattering. The quantum case is considered on the basis of the integral equation derived from the Schrödinger equation. The work continues the problem considered in [1] studied within the framework of classical mechanics and on the basis of solving the Schrödinger equation in quasi-Cartesian coordinates. The proposed article also uses a quasi-Cartesian coordinate system; however after the separation of variables, the integral equation is derived for the motion along the axis of symmetry horosphere axis coinciding with the z axis. The relationship between the scattering amplitude and the analytical functions is established. The iteration method and finite differences for solution of the integral equation are proposed.

2019 ◽  
Vol 64 (12) ◽  
pp. 1108
Author(s):  
Yu. A. Kurochkin

The problem of the motion of a free particle in the three-dimensional Lobachevskii space are interpreted as scattering by the space. The quantum-mechanical case is considered on the basis of the integral equation derived from the Schr¨odinger equation. After the separation of variables in a quasi-Cartesian coordinate system, the integral equation is derived for the momentum component along the axis of symmetry of a horosphere, which coincides with the z axis. The relationship between the scattering amplitude and analytical functions is established. The methods of iteration and finite differences are used to solve the integral equation.


Author(s):  
M. Suhail Zubairy

In this chapter, the Schrödinger equation is “derived” for particles that can be described by de Broglie waves. The Schrödinger equation is very different from the corresponding equation of motion in classical mechanics. In order to illustrate the fundamental differences between the two theories, one of the simplest problems of particle dynamics is solved in both Newtonian and quantum mechanics. This simple example also helps to show that quantum mechanics is the fundamental theory and classical mechanics is an approximation, a remarkably good approximation, when considering macroscopic objects. The solution of the Schrödinger equation is presented for a particle inside a box and the quantization condition is derived. The amazing possibility of quantum tunneling when a particle is incident on a barrier of height larger than the energy of the incident particle is also discussed. Finally the three-dimensional Schrödinger equation is solved for the hydrogen atom.


Author(s):  
P.C. Deshmukh ◽  
Aarthi Ganesan ◽  
Sourav Banerjee ◽  
Ankur Mandal

The degeneracy associated with dynamical symmetry of a potential can be identified in quantum mechanics, by solving the Schrödinger equation analytically, using the method of separation of variables in at least two different coordinate systems, and in classical mechanics by solving the Hamilton-Jacobi equation. In the present pedagogical article, the notion of separability and superintegrability of a potential, with profound implications is discussed. In an earlier tutorial paper, we had addressed the n<sup>2</sup>-fold degeneracy of the hydrogen atom using the Casimir operators corresponding to the SO(4) symmetry of the 1/r potential. The present paper is a sequel to it, in which we solve the Schrödinger equation for the hydrogen atom using separation of variables in the parabolic coordinate systems. In doing so, we take the opportunity to revisit some excellent classical works on symmetry and degeneracy in classical and quantum physics, if only to draw attention to these insightful studies which unfortunately miss even a mention in most undergraduate and even graduate level courses in quantum mechanics and atomic physics.


2012 ◽  
Vol 13 (01) ◽  
pp. 1250007
Author(s):  
SIMON HOCHGERNER

Let Q be a Riemannian G-manifold. This paper is concerned with the symmetry reduction of Brownian motion in Q and ramifications thereof in a Hamiltonian context. Specializing to the case of polar actions, we discuss various versions of the stochastic Hamilton–Jacobi equation associated to the symmetry reduction of Brownian motion and observe some similarities to the Schrödinger equation of the quantum–free particle reduction as described by Feher and Pusztai [10]. As an application we use this reduction scheme to derive examples of quantum Calogero–Moser systems from a stochastic setting.


2018 ◽  
Vol 4 (1) ◽  
pp. 47-55
Author(s):  
Timothy Brian Huber

The harmonic oscillator is a quantum mechanical system that represents one of the most basic potentials. In order to understand the behavior of a particle within this system, the time-independent Schrödinger equation was solved; in other words, its eigenfunctions and eigenvalues were found. The first goal of this study was to construct a family of single parameter potentials and corresponding eigenfunctions with a spectrum similar to that of the harmonic oscillator. This task was achieved by means of supersymmetric quantum mechanics, which utilizes an intertwining operator that relates a known Hamiltonian with another whose potential is to be built. Secondly, a generalization of the technique was used to work with the time-dependent Schrödinger equation to construct new potentials and corresponding solutions.


2014 ◽  
Vol 11 (08) ◽  
pp. 1450066 ◽  
Author(s):  
Antonia Karamatskou ◽  
Hagen Kleinert

In its geometric form, the Maupertuis Principle states that the movement of a classical particle in an external potential V(x) can be understood as a free movement in a curved space with the metric gμν(x) = 2M[V(x) - E]δμν. We extend this principle to the quantum regime by showing that the wavefunction of the particle is governed by a Schrödinger equation of a free particle moving through curved space. The kinetic operator is the Weyl-invariant Laplace–Beltrami operator. On the basis of this observation, we calculate the semiclassical expansion of the particle density.


Sign in / Sign up

Export Citation Format

Share Document